学年

教科

質問の種類

数学 高校生

波線引いてるところなんですが log底2分の1がマイナスをつけることでlog底2にできるのはそういう公式?みたいなのがあるんですか? なぜそうなるのか知りたいです🙇‍♀️お願いします。

295 182 演習 194 式が導かれる。 底≠1」の S とおくと, 方程 12-2t-3=0 t+1) (t-3) = 0 83 1/3として するか, または 本題 不等式を解け 184 対数不等式の解法 00000 (2)10gz(x-2)<1+log}(x-4) 県会 [(2) 神戸大, ( 3 ) 福島大 ] 基本 182 183 重要 185 logos(2-x)logo.3(3x+14) (log2x)-log24x>0 数に変数を含む不等式(変数不等式)、方程式と同じ方針で進める。 まず,真数> と, (底に文字があれば) 底> 0, 底≠1の条件を確認し、変形して oga A<10gaBなどの形を導く。 しかし、その後は a>1のとき logaA<loga B⇔A<B 大小一致 0<a<1のとき logaA<loga B⇔A>B 大小反対 のように底αと1の大小によって、 不等号の向きが変わることに要注意。 (3)10gzxについての2次不等式とみて解く。 D (1) 真数は正であるから, 2-x>0 かつ 3x +14 >0より 14 <x<2...... ① 3 &&&& golS= <a<1のとき 0.3は1より小さいから,不等式より 2-x≦3x+14 よって x-3 olS+8201>ols+ log. A Sloga B ①②の共通範囲を求めて -3≦x<2 5章 3対数関数 >A≥B は、底の条件 (2)真数は正であるから, x-2>0かつx4>0より (不等号の向きが変わる。) Ogol> 件を満たす。 x>4 log2x=0 1=log22, 10g (x4)=-10g2(x-4) であるから, さ 式により 2 1 不等式は Ex log2x ゆえに 2x logx2=1 よって おくと =0 log2(x-2)<10g22-10g2(x-4) これから x-2< x-2<4 log2(x-2)+10g2(x-4) <log22 が得られるが, 煩雑にな るので, xを含む項を左 辺に移する。 2 底2は1より大きいから 2)(t-3)=0 ゆえにx2-6x+6 < 0 log3x=3 対数の定 な関係を ない。 の確認が 題では底 ているこ 都産大] log2(x-2)(x-4)<log22 x>4との共通範囲を求めて (x-2)(x-4)<2 よって 3-√3<x<3+√3 x^2-6x+6=0を解くと (3)真数は正であるから x>0 4<x<3+√3 ① log24x=2+10g2xであるから,不等式は ゆえに よって (10gx2-logzx-2>0 x=3±√3 また√3+3>1+3=4 10gzx=t とおくと よって (t+1)(t-2)>0 (log2x+1)(log2x-2)>0-t-2>0 logzx-12<10gzxでよ したがって10gzx<10g2/12 10g24<10gx 底2は1より大きいことと, ①から0<x<1/24<x 21 のとき、 次の不等式を解け。 Ing(x-1)+10g(x+2)≦2 301 EX 117

解決済み 回答数: 1
数学 高校生

青い部分の言っている事の意味がわからないので、教えて欲しいです(*.ˬ.)"

また 脱 a 1 =a"X =a"xa""= a" a" a (²)" - (ax +) = (ab" ")" = a*b=a" x 1 a" b" b" 注意 0^(-nは負の整 数)と0°は考えない よって、 21'3' が成り立つ。 ■県東根 (定義しない)。 正の整数とするとき. n 乗すると αになる数, すなわちx=a となる数xをan乗根という。 3'=81, (-3)*=81 であるから,3と3は81の4乗根であ (5)=125であるから,-5は125の3乗根である。 なお、2乗根 (平方根) 3乗根 (立方根), 4乗根, 累乗根という。 On乗根(x=αの解) について man をまとめて 数学Ⅰでは, 「2乗する とαになる数をの 平方根 (2乗根) とい う」と学んだ。 ここは この考え方の拡張であ る。 y4 y=x" y4 y=x" 方程式xa の実数解は、曲線 y=x” と直線 の共有点のx座標であるから,実数αの 根について、次のことがわかる。 y=a a y=a Na nが奇数の場合任意の実数aに対して 0 x O Va X nが偶数の場合 1つあり、これを α で表す。 >0のとき,正と負の1つずつあり、その正の a' y=a' a' y=a' 5章 5 奇数 n:偶数 "で表す。 このとき,負の方はva である。 28 =0のとき, a = 0 とする。 <0 のとき,実数の範囲には存在しない。 なお, an乗根 α という。 でも偶数の場合でも、 が奇数の場合 については,n √0=0, a>0のときa>0 である。 注意 は今までと同 様に √ と書く。 <n が偶数のとき 負の 数のn乗根は存在し ない。 指数の拡張 ここで、αのn乗根 と n乗根 αの違いをはっきりさせておこう。 16の実数の4乗根は, 4乗して16になる実数で22 の2つある。これに対し, 4乗根 16 すなわち 16 は 4乗して 16になる正の数を意味するから, 2 だけである。 ■累乗根の性質 また >0.60から √a√√b>0 (Na/6)" =(ya)"(2/6)"=ab よって、定義から Vav6="ab ゆえに 41 が成り立つ。 ■無理数の指数 例えば,√3=1.732...... に対して, 173 1732 Ta a¹.73, a¹-732] 15 [a", a 100, a 1000, が限りなく近づく1つの実数値をαの値と定義する。 一般に,a>0 のとき, 任意の実数xに対してαの値を定めること ができ (2) がα>0,b>0 として, r,s が実数の場合 の指数法則 でも成り立つ。 16=2 <42~5も同様に証明 することができる。 <n乗して ab となる正 の数は ab <指数が有理数である数 の列。 273

解決済み 回答数: 1