学年

教科

質問の種類

物理 高校生

(2)でなぜBが高電位になるのか分かりません 回転すると右向きの磁束が増えるからそれを妨げるために、AからBの向きに電流が流れるのでAが高電位になるんじゃないんですか?

f B セント 135 〈交流の発生> 113 (2) 辺abは磁場を横切る体なので、 誘導起電力の式 「V=Blo」 を用いる。 (3)(pq間に発生する誘導起電力) (コイルの各辺に生じる誘導起電力の和) 標準問題 (5) コイルに生じる誘導起電力の大きさは、ファラデーの電磁誘導の法則 「V=-N4 at」を用いる。 A 135.〈交流の発生> 図1のような辺の長さが1の正方形 abedからなる1回 巻きのコイルを,磁束密度Bの均一な磁場の中に置き、 磁 力線に垂直な軸のまわりに,一定の角速度で図の矢印の 向きに回す。 コイルの両端はそれぞれリング状の電極p と qを通して,常に抵抗Rとつながっている。 このとき、コ イルは回転するが, リング状の電極と抵抗は静止したまま である。図2(a) と (b)は回転軸にそって見たコイルと磁力線 (a) = 0 である。図2のように,コイルの面と磁場の角度は,時 N S P 9 R- 図 1 B (b) t=to N S N S 刻 t=0 のとき 0=0, 時刻t=to のとき 0<B<1であ R cd ab 8 図2 った。次の問いに答えよ。 [A]各辺に生じる誘導起電力を考えることで, pq 間に発生する誘導起電力を考える。答 えには1,B,w, tのうちから必要なものを用いよ。 〇 (1) 辺 ab 部分の速さを表せ。 (2)時刻における辺 ab 部分に生じる誘導起電力の大きさを表せ。 (3) 時刻 t における各辺に生じる誘導起電力を足し合わせることで, pq間に発生する誘導 起電力 Vの大きさを表せ。 〔B〕 ファラデーの電磁誘導の法則を考えることで, pq 間に発生する誘導起電力を考える。 答えには l, B, w, tのうちから必要なものを用いよ。 (4) 時刻 t におけるコイルを貫く磁束を表せ。 (5) 時刻 t におけるコイルに生じる誘導起電力 Vの大きさを表せ。 ただし、必要であれば, 次式を利用してよい。 Asin wt =wcoswt, 4t ⊿coswt =-wsin wt At [C] 抵抗に流れる電流I と消費電力Pを考える。 p から抵抗を通って q に流れる電流の向 きを正とする。 記 (6) 時刻 t = to における辺 ab に流れる電流Iの向きを図1に矢印で示せ。 また電流Iに よってコイルが磁場からどのような向きの力を受けるか説明せよ。 (7) 消費電力の最大値 Pmax を1, B, w, R のうちから必要なものを用いて表せ。 また, P と wtの関係を 0≦wt2 の範囲でグラフに図示せよ。 [23 徳島大〕 (8)電流が磁場から受ける力 「FIBL」の向きは、フレミングの左手の法則より判断する。 2 (7)消費電力Pは, 「PIV=PR=」から適当な形の式を用いる。 〔A〕 (1) 辺abの速さひab は, コイルの回転半径が であるので,速さと角 2 速度の関係式 「v=rw」 より Vab 51=- (2) 時刻において,辺ab は水平から角度 wt 回転しているので 辺ab の磁 場に垂直な方向の速度成分 Vabi は図a より 上向きを正として Vabi = Dab COSWt=coswt と表される。 辺ab に生じる誘導起電力の大きさ | Vab|は, 「V=Bl」 より |Vab|=|Blvabi|=| 11=B1.12 cost=/12/Blacoswt| このとき,swt< ならば誘導起電力の向きはレンツの法則A より bが高電位となる向き ※Bである。 (3) 磁場を垂直に横切る辺は辺abと辺cdであり, これらの辺にのみ誘導起 電力が生じる。 辺cdについても 時刻に生じる誘導起電力の大きさを |Veal として求めると, 辺ab についての(1),(2)と同様になり <<-*A によっ くる磁 れた磁 B 公式カ 状 |V|=|Blucas|=|Bl-cos wt|=Bl³w|cos wt| 誘導書 Out < ならば誘導起電力の向きはレンツの法則よりdが高電位とな る向きである。 求め V=|Van|+|Vcal=12Blwlcoset|+1/2 よって Vab と Veaの誘導起電力の向きは同じ方向であるので, pq間に発 生する誘導起電力の大きさ Vは Blwcoswt|=Bl°ω\coswt| 〔B〕 (4) コイルの面積をSとする。 時刻において, コイルは水平から角 ・度回転しているので、 磁場に対して直角方向に射影したコイルの面積 Sは図bより S=S|sint|=|sinet| このとき、コイルを貫く磁束は、磁束の式 「Ø=BS」より, 0<wt<πで のコイルの向きに対してコイルを貫く磁束を正とすると =BS = Blsinat (5)(4)においてコイルに生じる誘導起電力 Vの大きさ|Vは,ファラデーの 電磁誘導の法則 「V=-N2」より 4t |V|=|-1×40 |=|_ A(BIªsinwt)|=|- BF²-- =l-Bl2wcoswtl=Blw\coswt|C Asin wt At ---

回答募集中 回答数: 0
物理 高校生

この物理の問題が回答見ても分かりません。解説お願いします

例題 発展例題5 斜面への斜方投射 物理 図のように、傾斜角 9の斜面上の点Oから, 斜面と垂直な 向きに小球を初速 で投げ出したところ, 小球は斜面上の 点Pに落下した。重力加速度の大きさをg として,次の各問 に答えよ。 ■ 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき、各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 解説 (1) 斜面に平行な方向 にx軸、垂直な方向に y軸をとる (図)。重力 加速度のx成分,y成 分は,それぞれ次のよ うに表される。 (1) 小球を投げ出してから、斜面から最もはなれるまでの時間を求めよ。 (2) OP 間の距離を求めよ。 y -gcoso をちとして,「y=vot- X gsino x 成分 : gsin y成分:-gcose y方向の運動に着目する。 小球が斜面から最も はなれるとき, y方向の速度成分vy が 0 となる。 求める時間をとすると,「vy = vo-gcoset」 の式から, Vo 0=v-gcoso・t t₁ = − g cose (2) Pはy=0 の点であり, 落下するまでの時間 1 ngcose・t2」の式から, 0= Votz-19 cos0 t2² 2 0=1₂ (vog cose-t₂) 200 gcoso た0から, ら, OP間の距離xは, t₂ = x 方向の運動に着目すると,x= xC x= = ◆発展問題 48,5 Vo =1/29sin0t'=1/12g sine. (02060 gcose 発展問題 2v, ² tane gcoso 29 sino. 12 Point 方向の等加速度直線運動は、 # し地点の前後で対称である。 y=0から1 の最高点に達するまでの時間と、最高点 びy=0 に達するまでの時間は等しく、 t=2t, としてを求めることもできる。

回答募集中 回答数: 0
物理 高校生

(さ)で「v²ーv。²=2ax」は使えないんですか?

States along the AT. Cimbing ded hillides s from North Carolina bengamot (Georgia to southern h into Ontario, ich blooms berries adI cohosh, oeyedaisy,black-eyedSusan New England)。 bee balm (Georgia lo New York), touch-me-not, boneset. above other undergrowth, e by tubelar fowers of the deepest, of he carlier nowers will hv I I 図2に示すように、正の荷電粒子(質量m [kg),電気量q(C), q> 0)が, x 軸上を真っすぐ正の向きに運動してきて原点0を volm/s)の速さで通過した のち,点A, B, Cを通過した。x軸上の電位の様子は図3のように示され V とす。 る。A, B. Cのょ座標を, それぞれ xA, Xル, Xc とする。また,原点0を電位 の基準とし、図3中の1VaはAからBまでの電位を示す。 し x Cm) XcーXo 大二関 A m, 4, D, エh, エル, Ic. VEのうち, 必要なものを用いて,以下の各間に答 えよ。 図2 ?ng 二 例 OA 間/AB間およびBC間の電界の大きさを求めよ。 V(V)、 ある、(コ)粒子が OA 間で受けるカの大きさを求めよ。 離 ニ 濃 お ケ 粒子がAを通過するときの速ぎを求めよ。 AちAは Vg の JJS ケ 『個き端 H 日 粒子がAからBまで進むのに要する時間を求めよ。 (ス) 粒子がCを通過するときの速さを求めよ。 る本軍S / O 0 B C XA XB Xc 図3 T-Ed VE- Exe F. gVB eE Ma: 9.VE ズA XローXA ◇M2(750-24) mIA

回答募集中 回答数: 0
物理 高校生

類題5の解説をして欲しいです!

場合の力学的エネルギー SS 弾性カのみが仕事をする場合を みが仕事をする場合。 物体の志 5生 よき 学的 重力と弾力が仕事をする のみが仕事をする場合 きた。一貞に。 重カと弾性カン 上 キー保存の法則は次式で表す * AUO琶 2 2 っー peed), な 【mU : 高き 億 aceelcration), た 【N/m) : ばね定数 ( 7 1 すす2 ヵ【m/s】 : 加き| 0 きさ (gridional : 大 9〔m/s9 : 重力加速度の 3 xp sm: 自然長からの変位 鉛直ばね振り子 較 一端を天井に固定したばね定数 たのばねが, 鉛直方向につるされて いる。このばねのもう一端に質量 77 の物体をとりつけると, ばねが伸び てつり合いの状態になった。手でこ。 1中 ミ 本 の物体を自然長まで戻して, 物体を 静かに放すと, 物体は上下方向に振 動する。自然長の位置を, 重力によ る位置エネルギーの基準面とし, 重 5 カ加速度の大きさをのとして, 次の問いに答えよ。 () つり合いの位置までのばねの伸びを求めよ。 (2 つり合いの位置を通過するときの物体の速さを求めよ。 の伸びを 旬直上向きを正とするとkm。 + (= mg) = 0 』 まつ(つま = の 物休を放した直後から。 物体が受ける罰は性力と重力なので カテ SSの2 をとする 過 つり合いの位置の基 進面からの吉 よって, 次式がなりたっ。 面からの高さん= である。 1 50Xプ+mgx0+みkxP 時 @SETW装信四上 っ 7がが 729(三Z) 3小結 29 に 0 三 た を代入し, りについて解く 品 5 当 =のg/全 ん 四 人馬5で, 最下点までのばねの作びをkp ょ 8 8 7

回答募集中 回答数: 0
1/2