学年

教科

質問の種類

物理 高校生

これあっているか確かめて欲しいです。ごちゃごちゃしててすいません🙇 もし間違っていたら教えて欲しいです。

物理 (b) 図3-3のように,z軸上に十分に長い導線があり、導線には大きさがIの電 流がz軸の正の向きに流れている。 また, xz 平面内に1辺の長さがαの正方形 の1巻きのコイルが固定して置かれており、正方形の辺ABは軸と距離αだけ はなれている。導線とコイルは空気中にあり、空気の透磁率をμ, 円周率をと する。このとき,z軸上の導線の電流が, 正方形の頂点Aの位置につくる磁場 7 の (磁界)の磁束密度の大きさは 6 であり、磁束密度の向きは 向きである。 fut 2Ra Z軸の負 Vb I 次に,コイルに大きさがiの電流を図3-3のA→B→C→D→Aの向き に流すと, コイルはz軸上の導線の電流がつくる磁場から力を受けた。 コイルの 辺ABが軸上の電流がつくる磁場から受ける力の大きさは 8であり, 力の向きは の向きである。また, コイル全体が軸上の電流がつくる 磁場から受ける力の大きさは 10 であり,力の向きは 11 の向きで ある。 x軸 1 Co H= H: 270 27.22 47 ※軸の負 1 2 より I 5/19 Bi→>> sec b Vis C + o 4th F Owth S y B = M F & B = MI a より 1 47a A a F. Iblay F. 472 4 D F Fr Wa 図魚 F2 F: MiI Miz 27 47 4 9 ANI (1-31/10 ) 2 2aI 20 29 20 20

回答募集中 回答数: 0
物理 高校生

式の立て方はわかるのですが、どうして振動の中心が変わるのかわかりません。教えて頂きたいです🙇

52. <あらい面上で振動する物体の運動〉 ばね定数 質量m 図のように, 水平なあらい床の上に質量mの物 体が置かれている。 物体はばね定数んのばねで壁と つながっている。 右向きにx軸をとり, ばねが自然 の長さのときの物体の位置を原点とする。 次の問い に答えよ。 ただし, 重力加速度の大きさをgとする。 物体を原点より右側で静かにはなす実験を行った。物体を位置 d(> 0) より左側ではなす とそのまま静止していたが,右側ではなすと動きだした。 (1) 物体と床の間の静止摩擦係数μを求めよ。 0 x 物体を位置 x(>d) から静かにはなすと, 物体は左向きに動きだした。 その後, 物体の速 さは位置 x1 (<-d)で初めて0となった。 (2) 物体と床の間の動摩擦係数μ' を求めよ。 (3)物体の加速度をαとして,左向きに運動している物体の位置xでの運動方程式を示せ。 (4) 物体が x から x1 に移動するまでにかかった時間を求めよ。 (5)xo から x1 に移動する間で, 物体の速さが最大となるときの位置と速さを求めよ。 その後, 物体は右向きに動きだし, ある位置 (>d) で再び速さが0となった。 (6)x1 から再び速さが0となった位置に移動する間で, 物体の速さが最大となるときの位置 を求めよ。 (7) 物体の速さが再び0となった位置 x2 を x と x1 を用いて表せ。

回答募集中 回答数: 0
物理 高校生

画像の問題の問7の答えが③になる理由が分かりません。 解説をお願いしたいです。

第1問 図1のように、なめらかで水平な床の上に, なめらか な表面をもつ質量 M の台が水平に置かれている。 台の右側は, 点を通る紙面に垂直な軸を中心とした半径の半円筒状に, 直方体がくりぬかれた形をしている。 図1は床に鉛直な断面を 示しており、 面 AB は水平で, 曲面BCになめらかにつながっ ている。 点0を原点とし、 水平右向きにx軸, 鉛直上向きに y軸をもつxy座標をとる。 重力加速度の大きさはg とする。 床は十分広く、空気の影響は無視できるものとする。 運動はす べて図1の紙面内 (同一鉛直面内) で起きているものとし、 以 下の問いに答えよ。 [1] 台を床に固定し,質量mの小物体を面 AB上のある点から 速さで水平右向きにすべらせた。 小物体は半円筒に沿って 運動し、BC間の途中の点Dで台から離れ, 最高点 Qに達 したのち落下した。 x軸とODのなす角をα 点Dにおける 小物体の速さを 点Dから点Qまでに要する時間を する。 小物体の大きさは無視できるとする。 Vo B 床 図1 問1 小物体がBD間の∠BOP = 0 となる点Pにあるとき, 小物体の速さを 0, 1, g を用いて表せ。 問2点Pで小物体が受ける垂直抗力の大きさNを,m,vo, 0, l,g を用いて表せ。 問3 速さを, α, L, g を用いて表せ。 D 台 問4時間 t を,,αg を用いて表せ。 問5点Qの座標 (X, Y) が次の等式で表されるとき, gのうちから必要なものを使って書き表せ。 ① (5) の空欄に入る式または文字を,,,, X= ① × ② - ③ × ④ xt YQ = ① × ④ + ③ × ② xt- ⑤ x t² [2] 台の固定を外し、 静止した台の面 AB 上のある点から, 質量mの小物体を速さで水平右向きにすべらせた。 小物体は 半円筒に沿って運動してある高さまで上がったのち, 台から離れることなく折り返し, 半円筒に沿って降りて面ABに引 き返した。 小物体の大きさは無視できるとする。 問6 小物体が最大の高さに達したときの小物体の床に対する速さを 02, m,Mを用いて表せ。 問7面ABに引き返した小物体が,床に対して左向きに進むのは,mとMの間にどのような関係があるときか。 次の①~ ⑧のうちから最も適切なものを1つ選んで番号で答えよ。 (1 1 -M m<- (7) m<2M ② m> -M ③m <M 4 m > M ⑤ m<√M ⑥m> √2M ⑧ m>2M

回答募集中 回答数: 0
1/20