学年

教科

質問の種類

物理 高校生

背理法による証明 k2乗は整数であるから C の2乗は4の倍数なのに M 2乗+ N 2乗- m - n は整数であるから a 2乗+ b 2乗は4の倍数ではないがわからないので教えてください

例題 4 背理法による証明 第2章 集合と命題 ★★★★~ la, b, c は a2+b2=c2 を満たす自然数とする。 このとき, a, bの少なくとも一方は偶数であること 背理法を用いて示せ。 考え方 結論を否定して矛盾を導く 結論が成り立たないと仮定する。 (結論を否定する) ⇒ 「α,bの少なくとも一方は偶数」の否定は 「a, bがともに奇数」 a+b=c の両辺について, 4の倍数であるかどうかを調べる。 解答 a, b がともに奇数であると仮定する。 [類 岐阜聖徳学園大 ポイント ① 結論を否定 ② 右辺を調べる このとき,a2,2は奇数であるから,c=d'+62 は偶数である。 左辺を調べる ③ 矛盾を導く 練習 4 よって, cも偶数であるから, cは自然数kを用いてc=2k と表される。 ゆえに,c2=(2k)²=4k2となり,kは整数であるから,2は4の倍数である。 一方,奇数 α,bは自然数nを用いて,a=2m-1,b=2n-1 と表される。 このとき,a+b2=(2m-1)+(2n-1)²=4(m²+n-m-n) +2となり、 m²+m²-m-nは整数であるから, a +62は4の倍数ではない。 ゆえに,a+b2=c2において,右辺は4の倍数であるが, 左辺は4の倍数でな から, 矛盾する。 したがって, a, bの少なくとも一方は偶数である。 [終] (1) 正の整数xが3の倍数ではないとき, x2を3で割った余りは1であることを示 (2)x,y,z は x2+y'=z2 を満たす正の整数とする。このとき,x,yの少なく 3の倍数であることを, 背理法を用いて示せ。 〔類

回答募集中 回答数: 0
1/1000