学年

教科

質問の種類

物理 高校生

(3)でどうして重力mgは含まないんですか??

電界中の荷電粒子の運動 例題 66 右図のような装置が真空中に置かれ ている。 左側のヒーターHから出た質 量m. 電気量-eの電子が, HA間に かけられた加速電圧 V によって加速 され,距離 dだけ隔てて平行に配置さ れた長さの2枚の電極 C D に平行 に入射する。 Cの電位はDよりVだ H Vo くなる。 314 324 ように,C,D と平行に軸、垂直に軸をとり, 電子の初速度は0とし、重力の 高い。 C,D の中央から距離Lだけ離れたところにスクリーンSを置く。上図の 影響は無視する。 (1) A を出た直後の電子の速さはいくらか。 (2) CD間にできる電界の強さEはいくらか。 (3) CD間で,電子のy軸方向の加速度αはいくらか。 (4) CD間の出口での,電子の軸方向の速度vy y 軸方向の変位 y を求めよ。 (5) CD 間を出た後, スクリーンSに衝突するまでの時間はいくらか。 (6)初めからスクリーンに衝突するまでのy軸方向の変位yを求めよ。 ●センサー 105 電圧Vで電子を加速した とき,電子に電界がする仕 事は, W=eV 解答 (1) 加速電圧にされた仕事 eV [J] だけ運動エネルギー 1 2e V が増加するので mvo?evo より,v= m (2)平行極板間の電位差と電界の関係より V V=Ed は12 電子の得た運動エネルギー は, ゆえに,E= d (3) 運動方程式より, mv²=eV 91. センサー 106 極板間では, 電界に平行な方向 →等加速度運動 電界に垂直な方向 ma=eE ゆえに、a= eE eV m md (4)CD間では軸方向には力が加わらないから等速度運動を する。CD 間を通り抜ける時間をとすると,軸方向の運 動より,l=vol, y 軸方向は加速度αの等加速度運動をする ので, eV 1 eVl →等速度運動 v₁ = at₁ = × × md Vo md √2e Vo 1 ev Y₁ 2 at₁₂ = × × 2 2 md (5) CD 間を出ると,電界はなくなるので、x軸方向にも 方向にも力がはたらかず,等速度運動をする。軸方向の運 Vo m VL e d № 2m Vo VI² Ad Vo ■ 原子・分子の世界 動より, L- =vot ゆえに、t= 2L-1 2L-1 m 200 22eVo 2 (6) 電極を出た後の y 軸方向の変位を y2 とすると, VI² VI(2L-1) y=y+y2=y+vyt= + Advo 4d Vo VIL 2d Vo

解決済み 回答数: 1
物理 高校生

(4)の問題です。 ロープの張力がすなわち引く力となるなら(4)の動摩擦力と等しくなったら動かなくなりませんか?教えてください!

例題18 水平面上の仕事 粗い水平面上に置かれた質量50kgの物体にロープをつけ,水平方向に 100Nの力で引いて、ゆっくりと10m移動させた。このとき,次の力がし た仕事は何Jか。ただし,重力加速度の大きさを9.8m/s²とする。 (1) ロープの張力 (2) 重力 (3) 垂直抗力 (4) 動摩擦力 指針 ゆっくりと移動させているので,物体が受け る力はつりあっている。これらの力を図示して、 仕事 の公式 「W=Fxcose」 を用いる。 そのとき, 力の向 きと移動の向きとのなす角に注意する。 垂直抗力 「解説」 (1) 物体が受ける 力は、図のように示される。 ロープの張力と移動の向きは 同じ (0=0°) なので, 動摩擦力 100N 重力 W=100×10×cos0°=1000=1.0×10°J (2) 重力の向きと移動の向きは垂直 (0=90°) なので, ・基本問題 103, 標準問題 106 50kg 100N -10m- W=(50×9.8) ×10×cos90°= 0J (3) 垂直抗力の向きと移動の向きは垂直 (0=90°) なの で, (2)から,垂直抗力がする仕事はOJである。 (4) 動摩擦力の向きと移動の向きは逆(0=180℃) なので, 動摩擦力がする仕事は負となる。 W=100×10×cos180°=-1000=-1.0×10°J Advice 各力の仕事の和は、 合力の仕事に等しく, 物 体がされた仕事の和になる。

解決済み 回答数: 1
物理 高校生

斜方投射の問題です ⑷までは解けました、⑸のsin2θ=1にしなければならないところがなぜなのかわかりません、誰かお願いします🙇‍♂️

なる。 下図 「 S t[s] 基本例題 11 斜方投射 小球を水平面となす角0だけ上方に速さ を通過して水平面上の点Qに落下した。 重力加速度の大きさをgとする。 (1) 投げてから最高点Pに達するまでの時間を求めよ。 (2) 投げてから落下点 Q に達するまでの時間tを求めよ。 (3) 最高点Pの地面からの高さHを求めよ。 (4) 水平方向の到達距離 OQ を求めよ。 0 (5) が一定のとき, OQ が最大となる 0の値はいくらか。 0 水平面 考え方 ? 投げた点を原点 0, 水平右向き, 鉛直上向きにそれぞれx, y軸をとると方向 方向は鉛直投げ上げと同じである。 は等速直線運動, [解説] ADVEN (1) y方向について, 最高点 Pではv=0m/sだから, v=vo-gt より vo sin g (2) y方向について,落下点Qではy = 0mだから, 1 y = vot- -gt より, 0 = vosin0- gt よって, t= 0 = vosino.tz - 1/201² 2vo sin g (3) y方向について, v2 - vo2 = -2gyより, よって, t2 = 24.5≒25m/s 02-(vosin0) = -2gH よって, H= 2g Vo² sin ²0 別解y = vot-1/2gte より, H = vosind.h 2 Vo %0² sin ²0 (t > 0) (※運動の対称性より, t2=2t) (5) (4) は OQ= vo² sin 20 g のとき OQが最大となる。 これより, 20 = 90° よって, 0 = 45° 最高点P で点Oから投げ出したら, = - よって, H= 2g (4) x 方向について, x = vot より, OQ = vocosAt2 200² sin cos よって,Q g 2 għ₁² H と書き直せるから, sin 201 初速度の x成分= COst y成分= vosin A 2 sin Acos0= 自己評価:9AB C 10 A B C 11 ABC sin 20 23

回答募集中 回答数: 0
1/4