学年

教科

質問の種類

物理 高校生

a≠0,b≠0,であり、aベクトルとbベクトルは平行でないという、記述は、一次独立であることを述べることと解説されているのですが意味がわかりません。簡単に説明してくれるとありがたいです

562 例題 335 交点の位置ベク △OAB において, 辺OA を 2:1に内分する点をE, 辺OB を 3:2に内分 する点をFとする。 また, 線分 AF と線分BE の交点をPとし、直線OP と辺ABの交点を Q とする。 さらに, OA = a, OB = 6 とおく。 (1) OP をd, を用いて表せ。 (2) OQをa, を用いて表せ。 (3) AQ:QB, OP:PQ をそれぞれ求めよ。 思考プロセス 見方を変える (1) 点P (2) 点Q 線分 AF 上にある ⇒ 線分 AF をs: (1-s) に内分とする。 OP = (1-s) +s 線分 BE 上にある ⇒ 線分BE を t : (1-t) に内分とする。 OP=(1-t) +t (1) 点Eは辺 OA を 2:1に内分す 2- る点であるから OE= 14 直線 OP 上にある ⇒OQ=kOP 点 F は辺OB を 3:2に内分する 3 点であるから OF 線分AB上にある ⇒ 線分AB をu: (1-u) に内分とする。 OQ=(1-u) +u Action》 2直線の交点の位置ベクトルは, 1次独立なベクトルを用いて2通りに表せ これを解くと よって = OP = a = 0, 60 であり, a と 2 ①② より 1-s= 3 a 3 -b 5 AP:PF=s: (1-s) とおくと OP = (1-s)OA + sOF = (1-s)a+sb S= 5 9' a+ BP:PE=t: (1-t) とおくと 2 OP = (1-t)OB+tOE = ta+ (1-t)b tかつ 9 a +Ⓡ t = -b 3 S A 2 Ⓒ a + Ⓡi (2) 140 = a + Ⓡi は平行でないから, 3 la + @ b 1-s ²³/²s=1-t S ③ ・・・① B 1次独立のとき =ウ The S 1次独立のとき 4 -1-s F A 点Pを△OAF の辺 AF の内分点と考える。 0 E ith B 点PをOBEの辺BE の内分点と考える。 1次独立であることを 述べる。 ① または②に代入する。 と ま 2 Po 綾

回答募集中 回答数: 0
物理 高校生

この問題の1番で、初めにどうして2つの自然数a.bをa<bとおくんですか?

LE (2) 積が864, 最小公倍数が144である2つの自然数の組をすべて求めよ からの2数の決定 (1) 和が117, 最大公約数が 13である2つの自然数の組をすべて求めよ。 0 Action 4. bの最大公約数がgならば、a=dg.b%=Dbg (dとがは国いに実」とお 解法の手順 1 求める2つの自然数 a, bの最大公約数 gを求める。 2a=dg. b=6'gとおく。 3 条件から式をつくり, d, 6の組を求める。 2 か 解答 め (1) 2つの自然数を a, b (aSb) とおく。 aとbの最大公約数が13であるから a= 13d, b=D136' (α' とがは互いに素な自然数) とおける。aSb より α'st 2数の和が117 であるから よって, 13d+136=D 117 より のを満たす互いに素な自然数の組 (d, b')は 44=b ならば。とbの 大公約数はaである ら、a=6=13とない。 和が17であることに する。よって,く おいてもよい。 3(1) 6 a+b= 117 (2) 6- d'+が =9 …① 03と6は互いに来 ないから,d'とがの はない。 より,求める2つの自然数の組 (a, b) は (13, 104),(26, 91), (52, 65) (2) 2つの自然数を a, b (aS6), 最大公約数をgとする。 2数の積が864 であるから 最小公倍数が144 であるから 2, 3より,144g = 864 であるから 正の約数 日2数aともの最付 数を9,最小公会養を すると gl=ab ab = 864 144g = ab 9=6 よって,a= 6a', b=66 (α' と6'は互いに素な自然数) とおける。aS6 より dsb 2より,6a'× 66' = 864 であるから のを満たす互いに素な自然数の組 (α', 6)は (1, 24),(3, 8) より, 求める2つの自然数の組 (a, b) は (6, 144), (18, 48) 十の位の数が 位の数と一の …4 『2と12 4と6は に素ではないから 6の細ではない。 d'b' = 24 2つの自然数a, Point 最大公約数と最小公倍数の関係 P ab- 12 (1) a=a'g, b=b'g (a' と6'は互いに素な自然数) とおける。 (2) 1= α'b'g 2つの自然数a, bの最大公約数を g, 最小公倍数を!とするとき が成り立 練習229(1) 和が184, 最大公約数が23である2つの自然数の組をすべて求めよ。 (2) 積が2940, 最小公倍数が210である2つの自然数の割をすべてポ (3) gl = ab 問題229 (1) 積が 2200, 最大公約数が 10である2つの自然数の組をすべてポめ (2) 和が75, 最小公倍数が90 である2つの自然数の組をすべて求めた。 340

回答募集中 回答数: 0