学年

教科

質問の種類

物理 高校生

【物理記述の仕方】 新しく自分で文字を置くときに二枚目の写真のように細かく説明しなくても三枚目の写真のように図に記入すれば大丈夫ですよね?体積や圧力をV,Pを使って置いてるのでイレギュラーな文字の置き方しない限りは説明入りませんよね?💦

図のように両端を密閉したシリンダーが, なめら 19 かに動くピストンで2つの部分A, B に分けられて おり,それぞれに単原子分子理想気体が1 [mol] ず つ入れられている。 シリンダーの右端は熱を通しやすい材 A B 料で作られているが, それ以外はシリンダーもピストンも断熱材で作られている。は じめの状態では, A, B 内の気体の体積は等しく, 温度はともに To [K] であった。次 に, 右端からB内の気体をゆっくりと熱したところ, ピストンは左向きに移動し, 最終 的にA内の気体の体積はもとの半分になり, 温度は T1 [K] になった。 気体定数を R[J/(mol・K)] として,以下の問いに答えよ。 (1)この変化の過程で,A内の気体が受けた仕事は何〔J〕 か。 (2) 変化後のA内の気体の圧力は最初の状態の何倍になったか。 (3) 変化後のB内の気体の温度は何〔K] になったか。 (4) この変化の過程で, B内の気体が外部から吸収した熱量は何 [J] か。 ( 京都府大)

回答募集中 回答数: 0
物理 高校生

このマイナスはなぜついているのですか?

必解 148. <原子核> 原子核の性質に関連する次の問いに答えよ。 質量数 A,原子番号Zの不安定な原子核Xが原子核Yにα崩壊した。 初め原子核Xは静止 していた。原子核 X, Y, α 粒子の質量をそれぞれ Mo, M, m とする。 ただし, Mo> Mi+m である。また,真空中の光の速さをcとせよ。 (1) このα崩壊で発生する運動エネルギーを求めよ。 (2) α粒子の運動エネルギーを求めよ。 (3)α崩壊でつくられる運動エネルギーKのα粒子を金箔 (Au) に大量に当てたところ,α 粒子の大部分は金箔を素通りして直進したが、 ごく一部は Au 原子核に散乱された。α粒 子は Au 原子核に比べ十分に軽く, Au原子核はα粒子を散乱するときに動かないものとす る。α 粒子と Au 原子核が最も近づいたときの距離を求めよ。 ただし,電気素量を e, 静 電気力に関するクーロンの法則の定数をん とせよ。 また, 初めα 粒子は Au 原子核から十 分に離れていたので, そのときの無限遠点を基準にした静電気力による位置エネルギーは 0 とみなすものとする。 天然の放射性元素ウラン 288U, ウラン23Uは放射性崩壊する。 (4) 292U 原子核がn回のα崩壊とん回のβ崩壊を経て, ラジウム Ra が生じた。 n とんを求 めよ。 (5)23Uの半減期を 7.5×106 年, 2Uの半減期を4.5 × 10 年とする。 現在, 地上における 28Uと282Uの天然の存在比は1:140 である。 4.5×10 年前の存在比を求めよ。 (6)292U 原子核1個が遅い中性子との衝突により核分裂するとき, 2.0×10℃eVのエネルギ ーを放出するものとする。 毎秒1.1×10-7kgの2U が核分裂するとき, 1秒間に放出され るエネルギーをJ (ジュール)単位で求めよ。 ただし, 電気素量 e=1.6×10-19C, アボガド [19 大阪市大〕 ロ定数 NA=6.0×1023/mol, 28Uの1mol当たりの質量を235g とする。

回答募集中 回答数: 0
物理 高校生

熱気球って外気温が低いほど気球内部の気体との温度差がつきやすいから浮かび上がりやすいと聞いたのですが、この問題だと温度差が小さい方が浮かび上がりやすいと言っています。どういうことですか?問の8番です。

3 内部の空気が太陽光で温められて膨張することで浮かび上がる風船を,ソー ラーバルーンと呼ぶ。 ソーラーバルーンの仕組みを、次のような理想的な状況に 基づいて考える。 質量の無視できる薄いゴム膜でできた風船に,質量 M [kg] の箱を接続した装 置を考える。 風船と箱の接続部分の質量は無視できるものとする。 ゴム膜は断熱 材でできているが, 風船内部の気体の温度は外部から上げることができる。 この 装置を、温度T [K] で圧力 [Pa] の大気中に置く。 温度T の空気の密度を 〔kg/m²)とする。 図の左側のように, 風船に,温度T で密度』の空気を封入 したところ,風船内部の空気の体積が Vo〔m ] となり、気球は地上で静止した。 ただし,気球とは,風船内部の空気と装置を合わせたものとする。 P V,T Vo. To f Ite Po. To M 地面 Pos To M 地面 以下の問いを通じて, ゴム膜は自由に伸びるが,風船内部の空気は封入された ままとし,風船内外の空気の圧力は常に等しいとする。 箱自体, 風船と箱の接続 部分、ゴム膜自体の体積は無視できるものとして、風船内部の空気の体積を気球 の体積と考えることとする。 空気は理想気体とみなせるものとし、 気体定数を R[J/ (mol・K)], 重力加速度の大きさをg〔m/s'〕として、以下の問いに答えよ。 問1 風船内部の空気の物質量を [mol] とする。 風船内部の空気の体が Vo であるとき,風船内部の空気の状態方程式を示せ。

未解決 回答数: 1
物理 高校生

(ロ)と(ハ)についてなんですけど、 (ロ)の熱力学第1法則の右辺の2RΔTの「2」って何を表しているのですか? (ハ)では15RnΔTだけではだめで、なぜ3/2×2RnΔTと15RnΔTのふたつが必要なのかがわかりません

4. 以下の設問の解答を所定の解答欄に記入せよ。 解答中に分数が現れる場合は既約 分数で答えよ。 なお, 導出過程は示さなくてよい。 熱を通さない断熱材でできた内側の断面積Sのシリンダー容器 (以後、容器と 呼ぶ) がある。 気体定数を R, 重力加速度の大きさをgとする。 (日) (A) 図1のように容器を鉛直方向に固定し,熱を通す透熱材(熱をよく通す素材) でできた熱容量の無視できる質量 Mのピストンを容器内側の中央に設置して, Mのピストンを容器内側の中央に設置して、 ピストンの上側と下側にそれぞれ1 molずつ (合わせて2mol) の単原子分子の 理想気体を入れた。 ピストンで密封された上側と下側の理想気体の圧力、 体積 . 温度はともに等しく,その圧力をP体積をVo温度をTする。この状態 を状態1とする。 平常 左 次に状態で容器の中央に設置されていたピストンの固定を外すと、ピストン は鉛直下方にゆっくりと距離αだけ移動して静止した (図2)。 この過程におい て、ピストンで仕切られた理想気体は常に平衡状態に達しており、 ピストン上側 の理想気体の圧力はP 体積はV1で,ピストン下側の理想気体の圧力はP2 積はVであった。 この状態を状態2とする。 なお、ピストンと容器の間に摩擦 であった。 力はなく、ピストンは鉛直方向になめらかに動くことができる。 また、ピストン と容器のあいだに隙間はなく,ピストンで仕切られた理想気体は反対側に漏れ出 ることはないものとする。 平

未解決 回答数: 1
1/34