学年

教科

質問の種類

物理 高校生

波の干渉の問題で(1)に関して何故反射波の中心がO'となるのか分からないです。教えて頂きたいです。よろしくお願いいたします。

波の干渉 鉛直な壁で区切られた水面上の1点0に 波源があり,振動数 f 波長の円形の波 が連続的に送り出されている。 点Aは水面 と壁との境界点 点Bは水面上の点であり, 線分 OA は壁に垂直でその長さは12/23入 線 分OB は壁と平行で,その長さは4入であ る。波が壁で反射されるとき位相は変化し ない。また,波の減衰は無視する。 B 9 1 波の干渉 るように広がる。 その点' とは 4入 ... Base 波の干渉 強め合い : +16 = C-_ 4人 弱め合い 距離差= m入 =(m+ +) a 同位相のとき(逆位相のとき 式が入れ替わる)。 は整数。 (1) 波が0点を出てから壁で反射されB点 にとどくのに要する時間を求めよ。 図1 (2)B点では,波は強め合っているかそれとも弱め合っているか、あ るいはそのいずれでもないかを答えよ。 (3)線分 OA 上で見られる波 (合成波) は何とよばれるか。 また、その ようすを図2に描け。0点から出る波は振幅αの正弦波であるとする。 (4)0点より左側の半直線 OC 水面の変位 LECTURE (1) 壁に関して, 0点と対称な点を O' とする。 反射 波は 0′ から出てくるとみなしてよい。 反射点を D とすると OD+DB=0'D+DB=0'B=√(31)²+(41)²=51 波の速さはv=f入 だから, かかる時間は OD+DB_55 上で見られる合成波はどのよ うな波か。 20字程度で述べよ。 0点から出る波の振幅をαと 3a 2a a O <-a する。 -2a (5) 線分 OB上 ( 両端を含む) で,弱め合う点はいくつある か。 -3a 12 B 壁 D 42 -32- A v f 入 (2)00′の2つの点波源による干渉と 考えてよい。 距離差は 距離 灰色の2つの直角三角形は 合同だから反射の法則が満 たされている。 △OOB は 3:45 の直角三角形。 図2 O'B-OB=5-4入 = 入 B ( 奈良女子大) よって, Bでは波は強め合っている (m=1のケース)。 正確には、 反射によって位相が変わらず 0と0 は同位相とみなせるからである。 もしも、反射によ って位相が変わるなら (0から山として出た波 が反射によって谷に変わるなら) 0 と 0' は実質 的に逆位相であり, Bでは弱め合うことになる。 波源からの距離の差が重要。 強め合いの位 重なって振幅は2倍となり, 弱め合いの 0 となる。 (3) OA間では逆向きに進む2つの波の重ね合 わせによって定常波が生じている。 Aは自由端 0 (1) 鏡による光の反射と同様に考えればよい。 反射波はある一点0' から出てく

回答募集中 回答数: 0
物理 高校生

305の問題の(2)がよく分かりません。特に解説の赤線で引いてるところが理解できません。(1)と(2)っておんさが直角になるだけでそんなに変わるものなんですか?教えて欲しいですm(_ _)m

きるものとし、重力加速度の大きさを9.8m/s とする。 また、弦を伝わる波の速さ [m/s] は, 張力の大きさ を S[N],線密度を p[kg/m] とすると, (1) 弦を伝わる波の波長 [m] を求めよ。 (2) 弦を伝わる波の速さ [m/s] を求めよ。 (3) このときの振動子Pの振動数f [Hz] を求めよ。 と表されるものとする。 305 おんさと弦の共振知 図1に示すように,おんさ の振動部Aに糸の一端をつけ、滑車を通して他端におもり をつるした。おんさの振動数は60Hz, AB間の糸の長さ は 2.0mである。 おんさを振動させたところ,腹が6個の 定在波ができた。 2.0kg 例題 57,313,314 2.0m A B 60Hz 図 1 おもり -2.0m (1) 糸を伝わる波の速さ [m/s] を求めよ。 UA B (2) (1)で,おんさと糸との関係を、 図2のように変えたと きできる定在波の腹の数はいくつか。 例題 57 図2 作図 306 気柱の振動知 長さが 0.60m の閉管内の気柱があ る振動数の音で共鳴した。 このとき,管の底以外に定在波 の節が1か所あった。 音の速さを3.4×10°m/sとし、 開口 端補正は無視する。 0.60 m (1) 閉管内にできる定在波のようすを図示せよ。 (2) 気柱内の音波の波長は何mか。 (3) 気柱内の音波の振動数fは何Hz か。 例題 58 ・気柱の共 OB の管口か (1)この音 (2) この (3) 位置 (4) ピス 310 して 管の 長さ 補工 (1) (2) とき (3

解決済み 回答数: 1
物理 高校生

至急!この問題の解法を教えてください🙇‍♀️

... 79.〈音波の性質> 図1上図のように原点Oにスピーカーを置き, 一定の振幅で, 一定の振動数の音波をx軸の正の向きに連続的に発生させる。 空気の圧力変化に反応する小さなマイクロホンを複数用いて, x 軸上 (x>0) の各点で圧力の時間変化を測定する。 ある時刻において,x軸上(x>0)の点P付近の空気の圧力か xの関数として調べたところ、 図1下図のグラフのようになっ た。 ここで距離 OP は音波の波長よりも十分長く,また音波が存 在しないときの大気の圧力をする。圧力が最大値をとる x=x から, 次に最大値をとる x=x までのxの区間を8等分 X1,X2, ...,と順にx座標を定める スピーカー X3 X4 X5 Poss XoX1 X2 点P付近の拡大図 図1 から x までの各位置の中で, x軸の正の向きに空気が最も大きく変位している位置, およびx軸の正の向きに空気が最も速く動いている位置はそれぞれどれか。 次に点Pで空気の圧力の時間変化を調べたところ、図2のグ P4 ラフのようになった。 圧力が最大値をとる時刻t=to から, 次に最大値をとる時刻t=ts までの1周期を8等分した、 た,..., と順に時刻を定める。 からまでの各時刻の中で, x軸の正の向きに空気が最も 大きく変位しているのはどの時刻か。 図3のように,原点Oから見て点Pより遠い側の位置に,x軸 に対して垂直に反射板を置くと,圧力が時間とともに変わらず常 po となる点がx軸上に等間隔に並んだ。 (3)これらの隣接する点の間隔dはいくらか。なお,音波の速さ をcとする。 Pos ta ta ts to tit tet ts t 図2 図3 反射板 (4) (3)の状態から気温が上昇したところ, (3) で求めたdは増加した。 その理由を説明せよ。

回答募集中 回答数: 0
物理 高校生

至急!この問題の解法を教えてください🙇‍♀️

必 76. 〈円形波の反射〉 5.0Hzの円形波が次々と送り出され, 水面上を伝わっていく。図で円は 水面波の山の位置を表している。 0を通り器壁に平行な直線上で0から 8.0m離れた点をPとする。 OからPの向きにのびる半直線を破線で表 し, Lとよぶ。 0から送り出された波はやがて器壁で反射するが, 反射 の際、波の振幅および位相は変わらないとする。 また, 水槽内の水面は 図のように、水槽の器壁から3.0m離れた点を波源として, 振動数 十分に広く水深は一様で、一度反射した波が再び器壁にもどることはな 8.0m P 3.0m く,水面を伝わる波の速さは一定であるとする。さらに,波の振幅の減衰はないものとする。 (1) 0から出た1つの円形波Cが器壁に届き反射した後, 反射波の山がPに達した。 この瞬 間の波C全体の山の位置(実線)を正しく表した図は(ア)~(エ)のどれか。 (ア) (イ) (ウ) (エ) ここでL上の任意の点をQとし, OQ=x[m] とおく。 Qでの, 0から直接届いた波と器 壁で反射して届いた波の干渉を考える。 22 波長を入[m], n=1, 2,...として,Qで2つの波が弱めあう条件を書くと, =(2-1) 1/12 となる。□に当てはまる式を入れよ。 いまx=8.0m の点Pでは2つの波が干渉した結果, 互いに弱めあい, 水位が変化しない という。また, L上で水位が同様に変化しない点のうち,0から見てPよりも遠くにあるの は2個だけであった。 PはL上で(2)で得られた条件を満たす点のうち, nがいくつに相当するか。 (4)入は何か。

回答募集中 回答数: 0
物理 高校生

至急!この問題の(1)から(4)の解説をお願いします🙇‍♀️

必 76. 〈円形波の反射〉 図のように、水槽の器壁から3.0m離れた点を波源として,振動数 5.0Hz の円形波が次々と送り出され, 水面上を伝わっていく。 図で円は 水面波の山の位置を表している。0を通り器壁に平行な直線上でOから 8.0m離れた点をPとする。 OからPの向きにのびる半直線を破線で表 し, Lとよぶ。 0から送り出された波はやがて器壁で反射するが,反射 の際, 波の振幅および位相は変わらないとする。 また, 水槽内の水面は 十分に広く水深は一様で、一度反射した波が再び器壁にもどることはな P 3.0ml 8.0m Q く、水面を伝わる波の速さは一定であるとする。さらに、波の振幅の減衰はないものとする。 (1) 0から出た1つの円形波Cが器壁に届き反射した後, 反射波の山がPに達した。 この瞬 間の波C全体の山の位置(実線)を正しく表した図は(ア)~(エ)のどれか。 (ア) P (イ) (ウ) (エ) ここでL上の任意の点をQとし, OQ=x[m] とおく。 Qでの, 0から直接届いた波と器 壁で反射して届いた波の干渉を考える。 42 波長を入[m], n=1, 2,...として,Qで2つの波が弱めあう条件を書くと, =(2-1) 12/12 となる。 □に当てはまる式を入れよ。 いま x=8.0m の点Pでは2つの波が干渉した結果, 互いに弱めあい, 水位が変化しない という。また, L上で水位が同様に変化しない点のうち,0から見てPよりも遠くにあるの は2個だけであった。 PはL上で(2)で得られた条件を満たす点のうち, nがいくつに相当するか。 (4) 入は何か。

回答募集中 回答数: 0
物理 高校生

この問題の4番について質問です。振動数はおもりの重さによっては変わらないとあるのですが,なぜですか? おもりの数が多いほど,弦が張ることになるので,音が高くなると思ってました。(ギターみたいな感じで)

(3) Hz である。 また, a=35cm をそのままにし, おもりを4倍に増やし たとき, 弦は共振しなくなった。 弦を再び共振させるには,Bを 少なくとも (4) cm 右に移動しなければならない。 64 弦の共振 全体の長さが120cm 質量 1.8g の弦の右端に滑車を通して質量 6 kgのおもりをつるし,振動源Sによって弦を振動させる。 この弦は, コマBを動かすことにより任意の一点を固定できる。 弦の張力はどこ も同じで,振動する AB間の距離をα, 重力加速度を10m/s2とする。 問1 コマBを適当に動かすと, a= 30cmで弦が共振する。 さらにB を右に移動していくと, a=35cm で再び弦が共振する。 したがっ て,弦を伝わる横波の波長は (1) cmであり,このときのAB 間の腹の数は (2) 1個である。 またSの振動数は (1) 振動数 fと波の速さが変わっていないの で、波長も変わっていない。 Aが節で今こ とに節があるから, Aから30cmの範囲の定 常波の様子は同じこと。 そこで,Bを右へ だけ移せば再び共振する。よって .. 1 = 10 cm 5cm ごとに腹が1つずつあるから 35÷5=7個 B =35-30 2 2 2 (2) 2 (3)密度は p = 1.8×10-3 120×10-2 B< [kg] と [m〕 を - = 1.5×10-3 kg/m 用いること v = mg P 6 × 10 V1.5×10-3=200m/s 2 もとの弦と同じ材質 同じ長さで, 直径が2倍の弦に張り替え て, αを30cmにし, おもりの質量を6kgに戻す。 このとき弦は 共振し, AB間の腹の数は (5) 個となる。 また, AB間の腹の 数を3個とするには, Sの振動数を (6) 200 v=fa より - f === 10 × 10-2 = 2000Hz (4) はじめはVP Img =fx.......① Hz とすればよい。 mを4倍にしたときの波長を とすると,fは< ①を見て,m を4 倍にすると A B 変わっていないから V p 4mg =fv.......② 2倍になると即断 したい。 S 中にス ② より 2= =24=21=20cm ① 1 (上智大) ・B' Level (1)~(4)★ (5),(6)★ Point & Hint 隔は (1) (2) 弦が共振するのは, 両端が節となる定常波ができるとき。 節と節の間 2 だから、弦の長さが1の整数倍に等しいとき,共振が起こる。 弦の長さが4=10cmの整数倍のとき共振するから、35cmより大き い次の値としては 40cm。よって,5cm 動かせばよい。 A 2 (5)直径を2倍にすると, 断面積が4倍になる から、密度も4倍になる。 波長を入とす ①からを4倍にす ③れば入は1/2倍と即 mg=fie ......③ 断できる。 ると V 40 この問題のような状況では,Sはおもりの重力 mg に より1=4 ∴ A2 = =5cm 2 12= cm ごとにあるから 30÷2=12個 は v [m/s] はv= (3) 弦の張力をS〔N〕, 線密度をp 〔kg/m〕 とすると, 弦を伝わる横波の速さ 等しい。

解決済み 回答数: 1
物理 高校生

物理基礎の正弦波の反射の問題です。 (2)の問題で、問題文の図では、O地点からマイナス方向に進んでいるのですが、答えではO地点からプラス方向に進んでいます。なぜ答えのようになるかわからないです💦

基本例題25 正弦波の反射 基本問題 198, 199 1 図の点0に波源があり, x軸の正の向きに 正弦波を送り出す。 端Aは自由端である。 波 源が振幅 0.20mで単振動を始めて 0.40s が 経過したとき, 正弦波の先端が点Pに達した。 0.20 (1) 波の速さはいくらか。 y[m〕↑ 0.20 PA 〔m〕 0 1.0 2.03.0 4.0 自由端 指針 (1) 波は 0.40s で1波長分 (2.0m) 進んでいる。「=」を用いる。 (2) 反射がおこらないとしたときの0.60s 後の 波形を描き, 自由端に対して線対称に折り返し たものが反射波となる。 観察される波形は, こ の反射波と入射波を合成したものである。 ■解説 (2) 図の状態から, 0.60s 後に観察される波形を図示せよ。 (2) 反射がおこらないとしたとき、波の先端は、 Pから 5.0×0.60=3.0m先まで達する。 した がって観察される波形は図のようになる。 y[m〕↑ 反射波 入射波 観察される波形 0.20 3.0 [m] 0 1.0% 2.0 ¥4.0 5.0 (1) 図から 0.40s 後に, 1波長の 波が生じている。 周期 T = 0.40s, 波長 -0.20 入 = 2.0mである。 波の速さを [m/s] として, A 2.0 = T 0.40 = 5.0m/s 90 章 波動

回答募集中 回答数: 0
1/49