学年

教科

質問の種類

物理 高校生

物理 熱 下の画像の、データ処理と書いてある下の問題を教えてください。 お願い致します🤲

73 B 実験水の温度変化を利用して、 金属の比熱を調べよう 日 【目的】 加熱したアルミニウムを水の中に入れ、水温の変化を測定する。このとき、熱が外部に 逃げなければ、熱量の保存が成り立つと考えられ、これを利用して比熱が求められる。文 献によると、アルミニウムの比熱は0.902 (J/g・K) であるが、測定値と比較し、異 なる場合はその原因を考察する。 【準備】 水熱量計、温度計、糸、アルミニウム(たぶん100g), メスシリンダー、計量カップ 【手順】 ① 水熱量計の銅製容器とかきまぜ棒を取りはずして、それらの質量 m〔g〕(=140g) を測定する。(今回は省略) ② アルミニウムの質量m2 〔g] を測定する。 ③水熱量計の銅製容器に水 200mLを入れる。 このとき、水の密度 は 1.0g/cmとして、水の質量 m3 〔g] とする。 →200g ④ 水熱量計を再び組み立てる (今回は省略)。しばらく放置した あとに、水の温度 [℃] を測定する。 ⑤ 図ではビーカーであるが、 今回は沸騰した水を電気ポッドから 計量カップにいれ、 その中に糸をつけたアルミニウムを完全に入 れてしばらく置く。 このときのお湯の温度 [℃] を測定して アルミニウムの温度とする。 熱平衡 ⑥ 糸をもってアルミニウムを取り出し、素早く水熱量計に移す。 ※注意:アルミニウムについた湯をよく払って移す。 ⑦ すぐにふたをして、かきまぜ棒を上下にゆっくりと動かす。 温度 ⑧ 水温の上昇が止まったら (30~40秒後) 水温 4 [℃] を測定する。 【データ処理】 アルミニウム を水 移ず 1 かきまぜ (鋼製) ① アルミニウムの比熱をc 〔J/gK] として、アルミニウムが失った熱量Q [J] を求める。 ② 水の比熱 4.2 J/ (g・K) を用いて, 水が得た熱量 Q2 〔J] を求める。 ③ 銅の比熱 0.38J/ (g・K) を用いて, 銅製容器とかきまぜ棒が得た熱量 23 [J] を求める。 ④ 温度計が得た熱量は小さいものとして無視し, Q=Q2+ Q3 の関係から,アルミニウムの比 熱c [J/g・K] を求める m1140g に m2=100g m3:200g +1=21.30 +2=772+3=26.6°

回答募集中 回答数: 0
物理 高校生

(ウ)の問題で L進めむごとに立方体の側面に衝突すると思うのですがなぜ1往復で1回しか衝突しないのですか?

247 気体分子の運動 一辺の長さLの立方体の容器に質 量m (kg単位) の気体分子がN個入っている。 図のように座標軸 をとるとき 以下の文中のに適当な式を入れよ。 (1) 1個の分子が図のなめらかな壁面Aに x方向の速度成分 vx で 弾性衝突したとき,分子の運動量の変化はアなので,壁 面Aに与える力積はイである。この分子は時間の間に ウ 壁面Aと衝突するので,この分子によって壁面Aが 受ける平均の力の大きさはf=エである。 24 L A (2) 全分子の速度の2乗の平均値を三平方の定理を用いて各成分の2乗の平均値で表 すと2x2+vy2+v22 であり, 等方性より全分子は平均的に2 ので,エを用いてN個の分子が, 壁面Aに与える力をを用いて表すと F=オ となる。したがって,壁面Aにはたらく圧力はp=カである。 (3)状態方程式 V =nRTとカを比較すると,分子1個の平均運動エネルギー Eはアボガドロ定数 N (物質量 n=N/Na),気体定数R, 絶対温度T を用いて表す ととなる。ここでN個の分子の質量が分子量Mo (g単位)であること を考慮すれば,キより分子の二乗平均速度は, Mo, R, T を用いて ク と表される。 例題 44259 '

解決済み 回答数: 1
物理 高校生

(4)なぜ(2)のように力のつりあいではないのでしょうか

図1-1 のように, 台A (質量m) が水平で滑らかな床に置かれている。 Aは床と角度30° をなすなめら 1 かな斜面をもつ。 斜面上の点Pに小物体B (質量2m) を置き, 動き出さないよう手でおさえる。 水平右 向きをx軸の正の向きとし、 鉛直下向きをy軸の正の向きとする。 重力加速度の大きさをgとして,以下の 問いに答えよ。 B P A 30° 図1-1 動く前のB 動いたあとのA 動く前のA 動いたあとのB 図 1-2 最初に, A を床に固定し, Bから静かに手をはなす。 1. Bが斜面を運動しているとき, Bの加速度の大きさをgを用いて表せ。 2.Bが斜面を運動しているとき, Bが斜面からうける垂直抗力の大きさをgmを用いて表せ。 3.Bが斜面に沿ってだけすべり落ちるのにかかる時間をgとを用いて表せ。 つぎに、すべり落ちたBを再び点Pに置いた状態で, A を床に固定せずなめらかに動けるようにし, Bか ら静かに手をはなす。 すると図1-2の破線のように, Bは斜面上を動き, Aは床を水平に左側に動いた。 床 から見たAの加速度の成分をαx, Bの加速度の成分を bx, y 成分を by とすると, Aから見たBの加速 度は斜面に沿った方向を向いていることから 1 (=tan 30°) bx-ax の関係がある。 4.Bが斜面を運動しているとき, Bが斜面からうける垂直抗力の大きさをgとを用いて表せ。

未解決 回答数: 1
物理 高校生

問5の問題がわかりません。 解説のマーカーで線を引いた部分について、なぜ、1/4Tとなったのですか?

体1. 方向 問4 積 12 ③ Point 運動量の変化と力積の関係 物体の運動量の変化は、 積と等しい。 mv2mvy=FAt その間に物体が受けたか m質量 : 変化前の速度, V2 変化後の速度 Fat: 受けた力積 Point! 衝突での作用・反作用の法則 作用・反作用の法則より直線上の小球入 の衝突で小球 A. Bが及ぼし合う力は大きさが等 しく向きが逆である。 そのため, 衝突で小球が小 球Bから受けた力積をIとすると, 小球Bが小球A から受けた力積はと表される。 小球Aと小球Bが衝突したとき, 小球Bが小球 から受けた力積は, 運動量の変化と力積の関係から、 4mv-04mo (右向きに大きさ4mv) である。 作用・ 反作用の法則より 小球 A が小球Bから受けた力 は、4m (左向きに大きさ4mv)である。 問5 単振動の振幅,周期 13 8 Point! 単振動の振幅 小球Bの振動の中心はばねが自然の長さのときの 小球Bの位置(力のつり合いの位置, 小球 A と衝突 した位置)で,単振動の一方の端は小球Bが最もばね を押し縮めた (壁面に最も近づいた)ときの位置であ る。 そして、振動の中心から端までの距離が振幅で ある。 求める距離は,力学的エネルギー保存の法則を用 いると求めることができる。 1/2 =1/2x2 法則を用いると, 1.4mv²= よって, X=20√ 第3問 A 問1 動の周期をT とすると, T=2 衝突直後から小球Bは単振動を始める。この単振 二つの のスリッ 明暗の縞 4m m =4π k 問2 千 小球Bはばねが自然の長さ (振動の中心) の位置か ら単振動を始める。 単振動を始めてからはじめて小球 かばねを最も押し縮めたときまでの時間は 1/17 表されるので, 求める時間は, 1/27=1/2x47 m m =π √ k +α! 単振動の周期 小球Bの単振動の周期を導いてみよう。 ばねが自 然の長さからxだけ縮んでいるとき,水平右向きを 正とすると、小球Bにはたらく力はxと表され る。この力は復元力であり、小球Bの加速度をαと すると、運動方程式は4ma=kxとなるので. a=-- k x と表される。 4m また、単振動の角振動数を とすると a=-x と表されるので、上式と比較して k 小球Bの単振動の周期をTとすると 4m √ k 222 = 4π T= @ +α! 単振動の振幅 m k 単振動の角振動数を とすると, 小球Bが振動の 中心を通過するときの速さと振幅の関係は. k Point 経経反合 ※反 レー S1, S スリ リッ リッ この 光 Point! ばねによる単振動の周期 ばねにつながれた物体の単振動の周期は T=2π m √ k T: 周期, m: 質量 k : ばね定数 衝突直後から小球Bがはじめて壁面に最も近づい たときまでに移動した距離は,小球Bがばねを最も 押し縮めたときのばねの自然の長さからの縮みと考え ればよい。その距離をXとして、衝突直後に小球B が水平右向きに速さ”で動き始めたときとばねを も押し縮めたときについて力学的エネルギー保存の v = Aw= A√ Am (上の+α!のの式を代入) m よって, A=20 √ k (第二

回答募集中 回答数: 0
1/37