学年

教科

質問の種類

物理 高校生

(3)はどうして赤い字の考え方だとダメなんですか?

Ⅰ 次の文章の空欄にあてはまる数式, 図, または文章を解答群の中から選び, マーク 解答用紙の所定の場所にマークしなさい。(34点) y 0 10 m x 図1 水平方向にx軸,鉛直上向きに軸をとる。このxy面内を,大きさが無視できる [m] r 小球が運動する。 小球の質量をm[kg] とし,重力加速度の大きさをg[m/s] とする。 ひもの一端が図1の原点0に固定されていて, ひもにつながった小球が,原点0か 一定の距離 [m] を保って円運動をしている。 ひもに太さや重さはなく,空気抵抗 はないものとする。原点からみた小球の位置の方向と鉛直下向きの方向のなす角 を 0 [rad] とする。小球の速さは9によって変化し,(0) [m/s] とおく。特に, 0 = 0 における小球の速さ(0) をCMと書くことにする。小球は0の増加する方向に運動 している。 力学的エネルギー保存の法則を使うと, (1) という関係が成り立つ。 小球には重力と, ひもから受ける張力 T がはたらいている。 それらの合力のうち、 ひもに沿った方向の成分は, 向心力でなければならない。 向心力はm, v(0)に より与えられるが,その関係式は円運動が等速でなくても成り立つ。この事実を使う と、張力はT= (2) [N] と表される。 ひもがたるまずに円運動を続けるには,

解決済み 回答数: 1
物理 高校生

垂直抗力Nについて詳しく教えてください! 自分の解釈では重力mgに対して反作用的に地面などから受ける力だと思っていたのですが、この問題の(2)の図bで、「台は小物体から垂直抗力の反作用の力Nを受けて」とあり、反作用の反作用は作用だからN=mgcosθじゃん!って思ってしまい... 続きを読む

ICS チェック問題 2 台の加速度が未知のとき 質量Mで傾角30°の台を、なめら かな水平面の上に置いた。 ここで, 質量mの小物体を台のなめらかな 斜面上に乗せた。 税込 15 分 う〜ん、 小物体についてはもうこれ以上立てられないし~。 L まだ式を立てていない物体がある 力の作図 慣性力 ナシ! (1)台の加速度を右向きにAとし, M 130° え〜と, →A あ! 台自身ですか? 1 30° 反作用のカ 'N 図 b 台上から見た小物体の加速度を斜面に沿って下向きにと して, 台上から見た小物体の運動方程式を立てよ。 (2) a, A をそれぞれ求めよ。 (3) 小物体が台上をLだけすべるのに要する時間を求めよ。 解説 (1) いつものようにだれから見て,どんな慣性力を受けるのかを 言ってみて。 気付いたね。 そこで,床から見た 台の運動方程式を立てよう。 図bで, 台は小物体から垂直抗力の反作用 (p.55) の力Nを受けて, 右向きに運動 している。ちなみに、今回は床から見ているから、慣性力は全くなしだ よ。見る人に注意! Nを分解して水平方向の運動方程式を立てると 台の加速度が未知のときは、 いつも床から 見た台の運動方程式を立てるよ MA=Nsin30° ハイ。 右向き A の加速度をもつ台の上から見るので、慣 性力は左向きに mA です。 以上で,3つの未知数a, A. Nで式 ① ② ③がそろった。 ②③に代入して MA = 優 いいぞ。 垂直抗力をNとして軸方向 に慣性力と重力を分解する (図a)。 N 方向の運動方程式は. 慣性力 ma=mAcos30°+mg sin 30° 土 mA+ 30 ...... y 方向の力のつり合いの式は、 x N + mAsin30°= mg cos30° ・② 30° 図 a (2)(1)で立てた①②の式だけで, a. A は求まるかな? 未知数がα A, N の3つもあって、 2つの式①、②だけ では足りません。 あと1つどうしても式が欲しいです。 いかにも。じゃあ、あと1つの式はどうやって立てるの? CamScannerキャン 180 | 物理の力学 mg - 1/2mA/1/2 √3 -mo よって, √3m (M+1m)A = mg T. A=4M+m ①より, a= √3 1 -A + 2 2(M+m) 294M+m ④より (3) 台の上から見て、台上に軸を立 てる (図c) = x=Lより, 等 加速度運動の [公式] (p.20) より ~g ⑤ g = 2L ..t₁ = a = L(4M+m) 答 (M+m)g ⑤より t=0 (対台) t=t 04 図 C 第14章 慣性力 181

解決済み 回答数: 2
物理 高校生

?のところがなぜそのような運動方程式がたてられるのか教えていただけないでしょうか。

第23章原子と原子核 147 基本例題 90 放射性崩壊 > 165,166 Po は安定な原子核Pbになるまで一連の放射性系列に従って崩壊する。 Po - a崩壊 0 B崩壊 ② B崩壊 ③ Pb Bi → Po → Pb (1)Po の原子核に含まれる陽子数と中性子数を求めよ。 (2) 0のPB, 2の Bi の原子番号と質量数をそれぞれ求めよ。 (4)Po がPbになるまでにα崩壊, β崩壊をそれぞれ何回行うか。 (静止したPO から放出されたα粒子の運動エネルギーK。と, @のPbの運動エネルギーKeの比 K。:K。 を求めよ。 (3) 3の Po の同位体を上記の中から選べ。 α崩壊はZ→-2, A→-4。 B崩壊はZ→+1, A→±0。 (5) 分裂の際, 運動量が保存することから,速さの比 Da: D が求められる。質量比=質量数の比 圏(1)陽子数=原子番号 Z=84 中性子数=A(買量数)-Z=218-84=134 (2) α 崩壊は Z→-2, A→-4 なので 0Z=84-2=82 A=218-4=214 B崩壊は Z→+1, A→±0 なので 2 Z=82+1=83 A=214±0=214 (3) 同位体とは原子番号Zが同じ(元素記号も同じ)で質量 数Aが異なる原子核のこと。したがって Po (4) それぞれa回, B回とおくと A→218-4a=206 α=3回 Z→84-2a+B=82 B=4回 (5) α粒子は He, ①の PbはPbなので、 Ma:mpo=4:214=2:107 分裂の前後で運動量保存より Ve= 2 0=maVa-MpoUFo Va: Un三mPs:Ma Ka:K= -MPOUP6 2 MaVa =mam:mpoMa=mpo :ma=107: 2

解決済み 回答数: 1
1/3