学年

教科

質問の種類

物理 高校生

高校物理です。 類題の解き方を誰か教えてください。

10 例題② 導体棒の運動 (発電機の原理) 鉛直上向きで磁束密度B[T] の一様 磁界中に, 間隔 [m] で水平に置か れた直線状の平行な2本の導線と、 抵抗値 R[Ω]の抵抗をつなぎ,軽い導 体棒ab を置く。 導体棒には軽くて伸 a B M 支える。静かに手をはなすと, おもりは下降し始め、しばらくして おもりと びない糸を張り, 滑車を通して他端に質量M[kg]のおもりをつり下げ、手で 導体棒は一定の速さになった。 重力加速度の大きさをg[m/s] として、次の問 問いに答えよ。 ただし, 導体棒の質量や抵抗, 導体棒と導線との間の摩擦力,回 路を流れる電流がつくる磁界は無視できるものとする。 (1)回路を流れる電流の強さ I[A]を B, l,M,g を用いて表せ。 一定の速さ” [m/s] を B, l, R, M, g を用いて表せ。 (3)重方の仕事率 P〔W〕を B, l, R, M, g を用いて表せ。 指針 (1) 等速度運動をしているおもりと導体棒にはたらく力はつり合っている。 (2)に生じる起電力を”を用いて表し, キルヒホッフの法則を用いる。 #4 (1) 導体棒には,糸の張力 T[N] と電流が磁界から受ける力 IBI [N], おも りには糸の張力T [N] と重力 Mg 〔N〕 がはたらいている。おもりと導体棒は等速度 運動をしているので,それぞれにはたらく力はつり合っている。よって, T-Mg=0 ・① T-IBl=0 ......2 式①,②より,IBl=Mg よって, I= ・[A] Mg Bl (2)導体棒 ab には,a から bに向かう向きの誘導起電力 V=uBl[V] が発生する。 キルヒホッフの第2法則より、 p.302式(3) p.261式 (12) vBl=RI よって,v= RI RMg [m/s] Bl B²12 (3)力の仕事率 P〔W〕 は, 力と速さの積で表される。 すなわち, M'g'R P=MgXv= (W) B²12 類題2 図のように、例題② の装置に, 内 部抵抗の無視できる起電力E [V] の電池とス イッチSを付け加えて, おもりを手で支えて おく。 スイッチSを閉じて静かに手をはなす と、おもりは上昇し始め、 しばらくするとお もりと導体棒は一定の速さになった。 R ET (1)回路を流れる電流の強さ [A] を B, l,M,g を用いて表せ。 (2)一定の速さ [m/s] を B, l, E, R, M, g を用いて表せ。 B a M

回答募集中 回答数: 0
物理 高校生

この問題って反時計回りに回ると上向きの磁場が増えるので、下向きの磁場を作り出そうとしないのですか?

用いて表せ。 た。 位置エネルギー E, を、それぞれ計算し、両者が等しくなることを示せ。 [21 新潟大] しているジュール熱P, と, コイルが単位時間当たりに失 130. 〈回転する導体棒に生じる誘導起電力〉 次の文中の空欄 ア~オに当てはまる式を書け。 また, 空欄 ac には当ては まる向きを図1の①~⑥の矢印の中から選べ。 図2には適切なグラフの概形をかけ。 図1のように、 鉛直上向きの磁束密度の大きさ B[T〕 の一様な磁場中に, 導線でできた点を中心とする半径 am〕 の円形コイルが水平に置かれている。 円形コイル の上には長さαの細い導体棒の一端Pがのせられ,導体 棒の他端は,点の位置で,磁場に平行な回転軸に取り つけられている。 導体棒 OP は点Oを中心として,端P が常に円形コイルと接触しながら, 水平面内でなめらか に回転することができ, そのときの導体棒と円形コイル の間の摩擦はないものとする。 回転軸も導体であり,回 転軸と円形コイルの間に抵抗値 R [Ω] の抵抗Rとスイ ッチSを接続している。 BL 0 ⑥ 円形のコイル 電場の強さ 回転軸 B 抵抗 R 図 1 スイッチS (N/C) 0 a 点 0からの距離(m) 図2 スイッチSを開いて,導体棒を点を中心として鉛直 上方から見て反時計回りに,一定の角速度 rad/s] で 回転させる。このとき導体棒OPの中点Qに位置する 導体棒中の電気量 -e [C] の電子が磁場から受ける力の 大きさは ア 〔N〕 で,その向きは図1の矢印 の向きである。この力は,導体棒中に生じる電場から電子が受ける力とつりあう。導体棒中 に生じる電場の強さは点0からの距離によって異なる。図 2 に OP 間の各点における電場 の強さのグラフを、横軸に点0からの距離をとり,縦軸を適切に定めてかけ。 a 次に,スイッチSを閉じて, 導体棒を点を中心として鉛直上方から見て反時計回りに、 一定の角速度で回転させる。 導体棒が磁場を横切ることにより OP 間に起電力が生じる。 この起電力の大きさはイ 〔V〕 で, 導体棒を流れる電流の向きは図1の矢印b の向 きである。このとき, 抵抗Rで消費される電力はウ 〔W〕 である。 導体棒に電流が流れ ることにより導体棒全体が磁場から受ける力は,大きさが エ [N] で、図1の矢印 [ [c の向きである。 磁場から受けるこの力のすべてが導体棒の中点Qにはたらくと考え ると,導体棒を一定の角速度で回転させるために必要な仕事率はオ 〔W〕 である。 C 〔15 同志社大〕 (図)

未解決 回答数: 1
物理 高校生

(6)で磁場による力が働いているのにエネルギー保存則が成り立つ理由を教えてください

(4)(ア)から(エ)の全区間でコイルに生したジュール熱の総量を求めよ。また、この総量とコイ ルの速さを一定に保つために作用させた外力との関係を述べよ。 129. 〈斜面上を動く正方形コイルに生じる誘導起電力〉 図のように、水平面となす角度が ⑥ (0x0<)の十分 長い斜面がある。この斜面に、質量がm, 電気抵抗が R, 磁場 B JAC [21 高知大改 A D 1 m.R B M x 0 1辺の長さがdの正方形の1巻きコイル ABCD を置く。 いま、斜面にそって下向きをx軸にとる。斜面上のx≧0 この領域には、面と垂直上向きに磁場があり,その磁束密度 の大きさはxの関数として, B=kx で与えられる。 こ ここでは正の定数である。 コイルの自己インダクタンス, およびコイルと斜面の間の摩擦力はないものとする。 重力加速度の大きさをgとする。 初めに、コイルの辺BCがx軸と平行で,辺AB と辺 CD の位置が,それぞれ, x=0 と x=dになるように置いた。 この状態から, コイルを静かにはなしたところ, コイルは辺 BCがx軸と平行なまま。斜面にそって下向きに動きだした。 辺ABが位置 xにあり,速さで運動している瞬間について,(1)~(6)に答えよ。答えの式 は,m,g, R, k, x, devのうち必要なものを用いて表せ。 (1) 辺ABの両端に生じている誘導起電力の大きさ V」を求めよ。 また, 電位が高いのは端A と端Bのどちらか答えよ。 (2) コイルに生じている誘導起電力の大きさ Vを求めよ。 Xxx dayRoux よって、 E=Bwx OPの電力の大きさV[V] とれるから V-12/Baw まるようになるか OPのである。 P(W) 抵抗で R に流れる電流の大きさ であるから 受ける力の式「F= (4)の向きが②だから、フレ 仕事率(W) は、 (7) Baw Ba 131〈相互誘導〉 2 AR ファラデーの電磁誘導の法則 比較する。 が流れているコイル <コイル」を貫く磁束のは、 SISL N₁ 電流が

回答募集中 回答数: 0
1/17