学年

教科

質問の種類

物理 高校生

⑷でどうしてX軸方向の運動方程式しか成り立たないのか、Y軸方向のことは考えないのかというのと、 どうして重心で考えているのかがよくわかりません

34円運動 万有引力 ◇47. 〈半円形状の面にそった円運動〉 図のように, 半径Rの半円形のなめらかな面を もつ質量Mの台が水平でなめらかな床面上に固 定されている。 半円形の端点Aから質量mの小 A m 0 R 0 物体を静かにはなす。小物体の位置を,小物体とRsing 円の中心を結ぶ線分と水平線 OA がなす角度 0. 0で表す。 また、床面には水平方向右向きにx軸 をとり、半円形の最下点の位置を x=0 とする。 重力加速度の大きさをgとして,次の問いに答え よ。 (1) 小物体が角度0の位置を通過するときの速さ」 を求めよ。 M x 0 (2) このときの小物体が台から受ける垂直抗力の大きさ N と, 台が床面から受ける垂直抗力 の大きさFを,R, M, m, sine, gの中から必要なものを用いて表せ。 また, 横軸に角度 0,縦軸にNとFをとり, Nは実線, Fは破線としてグラフをかけ。 グラフでは, とし、適切な目盛りを振ること。 次に,台の固定を外して小物体をAから静かにはなす。 M = =4 m >+ (3) 小物体が角度の位置を通過するときの速さと,台の速さ Vを,R, M, m, sin 0, X gの中から必要なものを用いて表せ。 このときの小物体の水平方向の位置 x2 と, 半円形の最下点の水平方向の位置 X を R, M, m, cose を用いて表せ。 〔23 電気通信大] 必解 48. 〈ケプラーの法則〉

未解決 回答数: 1
物理 高校生

1番最後の問題が分かりません。図などで分かりやすくしてもらえるとありがたいです!

必修 (BURON TE 基礎問 49 気柱の共鳴 物理基礎 図のように、円の断面をもち太さが一様な管の右からピストンを入れ、ピ ストンを移動させてこの閉管の長さを自由に変えられるようにする。 管の左側に、その開口端に向けて音波を出す音 源を置く。音源から振動数一定の音波を出し, ピストンで閉管の長さを変えると共鳴が起こり 管内に定常波ができる。この定常波の波形を表 さらに, CCC" 音源 管 ピストン すために,管の左の開口端の中心に原点Oをとり,管の中心線を軸に、こ れと垂直に軸をとる。 波形は, 空気の軸の正の向きの変位はy軸の正の 向きに,z軸の負の向きの変位は”軸の負の向きにおき換えて表す。空気中 の音速を 340 〔m/s〕 として,以下の問いに答えよ。ただし,開口端と定常波 の腹とのずれは無視するものとする。 (6)(1) I. 音源から振動数 f〔Hz] の音波を出したとき,管の長さが1〔m〕のとき 共鳴して管内に図のような波形の定常波ができた。ただし,現在より 4.00×10-3 秒前のときの空気の変位の波形は曲線 C” で,現在より、 200×10-3秒前のときの空気の変位の波形は管の中心線と一致する直線 C′で,さらに,現在の空気の変位の波形は曲線Cで表されている。なお, この間に同じ状態が現れることはなかったものとする。 (1) 音波の振動数f [Hz] を求めよ。 (2)管の長さ [m] を求めよ。 の関係式を! (3)現在の時刻で, 管内の空気が最も密になっている場所の開口端からの 距離を l 〔m〕 を用いて表せ。 Ⅱ.次に,音源から別の振動数の音波を出したとき, 閉管の長さをlo [m〕 に すると共鳴した。このときの定常波の節の数はn個であった。 その後,さ らに管の長さを少しずつ長くしていったとき,長さが [m] で次の共 7 Zo 鳴が起きた。 (4) 管の長さが 〔m〕 のとき生じたn個の節がある定常波の波長をnと lo 〔m〕 を用いて表せ。 また,音源の出した音波の波長をLo [m] のみで表せ。 JOP 管の長さが1/3 〔m] のとき生じた定常波の節の数をnを用いて表せ。 (奈良女大 )

回答募集中 回答数: 0
物理 高校生

交流発電機の原理 交流発電機が回転し続けるために加える外力の仕事率が抵抗での消費電力と保存するのは何故なのでしょうか? 誘導起電力は仕事はしないのですか?教えてください。

7/1029 7/29 10 交流発電機の原理 電磁誘導の骨格、出題 次の文中の空欄 ①〜13を埋めよ。 ただし①と⑧はイロのどちらかを その他は数式で記入せよ。文中の物理量は MKSA単位系で表す。 }の中から選び、 交流発電機の原理を考えてみよう。 図のように一様な磁界 (磁束密度B) の中に面積Sの 長方形 abcdの一巻きコイルを置き, 磁界に直交する軸のまわりに一定の角速度で回転さ せる。 コイルを貫く磁束のは周期的に変化する。 コイルがabを上にし,その作る面が磁界の 向きに垂直なときに時刻を0とし,かつこのときに磁界が面abcdを貫いている向きを破 束が正となる面の向きとすれば,=)となる。時間⊿tの間における磁束の変化 とするとき、コイルに生じる誘導起電力は, cd a b向きを電流の正の向きと LT, V=1 )/4t=30 であり、コイルの両端 pq に抵抗Rを接続して回路を形成 すると,図の状態で電流は (イ)ab, (ロb→a} の方向に流れる。 コイルの抵抗が無視でき るとすると、このときの電流I )であり,抵抗で消費される電力Pは,P ) となる。 次に回路を流れる電流が磁界から受ける力とコイルの回転に要する仕事を考えよう。 図の ように磁界の向きを方向, 磁界とコイルの回転軸に垂直な方向を方向, 座標原点を回転 軸にとる。 図の状態で,コイルの一部ab (長さ)が磁界から受ける力の大きさは電流Iを用 いて (ロ)下向き}となる。一方,図のコ であり,その方向は方向を{(イ)上向き, イルの回転からaまでの長さをとし, コイルの一部abの位置をx-y座標で表すと (土,日)=(8), }, またその速度は(フェ, by) = (),( たがってコイルの一部 ab が磁界から受ける力にさからって等速回転するために必要な仕事 )} となる。 し は単位時間あたりP=)となる。コイルの一部cdについても上と同様の議論がで またad, bcで受ける力はのまわりの回転運動を生じさせない。したがってコイル全 体で必要な仕事は単位時間あたり 2P' となり, 式を整理すれば電力Pと一致することがわか る。 N 4 d T a R B b B ◎電磁誘導 B ◎電磁誘導 亜(t) 閉曲線 IV ↓ C ~ ・回路程式 の向きを設定 I -(右手系) → の学 Vem (~ファラデー・ノイマンの法則) PR(t) = Pex(t) エネルギー保存 -46-

回答募集中 回答数: 0