学年

教科

質問の種類

物理 高校生

高校物理の円運動の問題です。 マーカー引きしている箇所で①に③を代入して整理するとSが求められるのですが、 どのように整理したらこの解答に導けるのかわからずおります。 (その過程がわかりません) そもそも代入箇所は、V2への代入でいいのでしょうか? 教えていただけると幸いです。

問8-3 右ページの図のように,長さlの糸に質量mの物体を結び、最下点で初速度を 与えた。 以下の問いに答えよ。 (1)糸が鉛直方向となす角度が0のときの糸の張力Sを求めよ。 (2) 物体が1回転するために必要なvo に関する条件を求めよ。 この問題では,物体の高さが変わるため, 物体の速さも変化します。 つまり、この問題における円運動は,等速円運動ではないのです。 等速でない円運動の場合でも基本的な考えかたは等速円運動のときと同じですよ。 (1) は「円の中心方向の力のつり合いを考えて, S=mgcose」としてはダメです。 物体は静止していない、つまり,円運動をしています。 円運動をしているということは,中心方向に加速度が生じていますよね。 加速度が生じているということは,力のつり合いではなく, 運動方程式を立てて考えなければならないということです。 <解きかた (1) 向心力は、張力Sと, 重力の中心方向成分である-mgcoseとの和 S-mgcos 円運動の半径はlなので、運動方程式F=maにあてはめると v2 S-mgcosQ=m ………① F a 献により、 また、物体は最下点から高さl (1-cose) の位置にあるので 力学的エネルギー保存則より 1 mvo=mgl(1-cose) + -mv² 2 位置エネルギー 運動エネルギー 最初の運動エネルギー ・③ 問題文にない』を消去 Onie? ②より,v=vo2-2gl (1-cos) ①③ を代入して整理すると, 求めるSの値は 2 S= mvo l + mg (3cos 0-2) 答 ......④ ちょっと難しく感じたかもしれませんが使ったのは運動方程式 (①式) と, (①式)と、 力学的エネルギー保存則 (②式)の2つで、 ①式が円運動になったというだけです。 「円運動でも使う道具は今までと同じ」と考えておけば怖くはないですよ。

未解決 回答数: 1
物理 高校生

(2)条件にV>0とありますが、なぜV=0は含まれないのか教えてください

遠心力に関係した身近なものとしては, 洗濯機や遊園地のループ式ジェットコースターなどがある。 例題 15 鉛直面内での円運動 右図のような, 半径[m〕のなめらかな円筒面に向 けて,質量m〔kg〕 の小物体を大きさvo [m/s] の初速 度でなめらかな水平面からすべらせる。 重力加速度の 大きさをg〔m/s'] とする。 53 58 62 B C 10 (1) 鉛直線となす角が0の点(図の点C) を通過すると きの, 小物体の速さと面から受ける垂直抗力の大き さを求めよ。 m Vo A 5 (2) 小物体が点Bを通過するための の条件を求めよ。 ●センサー14 解答 (1) 点での小物体の速さを 円運動では,地上から見て 解くか, 物体から見て解く かを決める。 [m/s] とすると, 力学的エネルギー 保存の法則より B mgcoso N C 1 12= mvo mv2. +mg(r+rcose) ① 地上から見る場合 遠心力は考えず,力を円の 半径方向と接線方向に分解 し,円運動の半径方向の運 動方程式を立てる。 2 ゆえに、 rcos 00 0 mg m-=F r または mrw=F ② 物体から見る場合 v = √v2-2gr(1+cos0) [m/s] 垂直抗力の大きさをN[N] とすると, 地上から見た円運動の運動方程式は, m- =N+mg cose r これに”を代入し、整理すると, ......① 遠心力を考え、力を円の半 径方向と接線方向に分解し, 半径方向のつり合いの式を 立てる。 ※どちらでも解ける。 2 mvo N= -mg (2+3cos) 〔N〕 r ……② ● センサー 15 物体が面に接しているとき, 垂直抗力 N≧0 (1) 水平面を重力による位置 エネルギーの基準面とする。 別解 小物体から見ると, 円の半径方向にはたらく力は,実際 にはたらく力のほかに、円の中心0から遠ざかる向き に遠心力がはたらいている。 半径方向の力のつり 合いより, N+mg cosm-00 (量的関係は上と同じ) r 圃 非等速円運動では,円の接線方向にも加速度があり、物体か ら見た場合、接線方向での力のつり合いを考えるためには、接 線方向にはたらく慣性力を考える必要がある。 (2)(1)より,00π [ad] では, 0が小さくなるにつれて, v, Nはともに減少していく。 点Bを通過するためには,点B でぃ> 0 かつN≧0 であればよい。 ① より 0=0を”に代 入して, v= √vo²-4gr よって,vo4gr>0 ゆえにvor 注 ③ ④を比較すると, N≧0(面から離れない条件) が 2 の条件を決めることになる。 2 mvo また,②より 0=0をNに代入して、N= 5mg r 2 mvo よって, -5mg≥0 ゆえに、vo√5gr r ③ ④ がともに成り立つためには,vo ≧√5gr 5円運動 35

解決済み 回答数: 1