学年

教科

質問の種類

物理 高校生

解答が無いので、途中式を書いて答えを教えて欲しいです

題例 F=ma 問題2. A君が, 自作ロケットの打ち上げ試験を行った. ロケットは,エンジン点火後 秒間上向きの一定の加 速度αで上昇した. このロケットの運動を考えるために,下図に示したように, 地表を原点としてx座標を定義 した. ロケットはx軸に方向にのみ運動するとし, 空気の抵抗を無視して, また高さによって重力加速度が変化 することはないとして, 以下の問に答えよ. (1) エンジン燃焼終了時のロケットの速度vo を求めよ. (2) エンジン燃焼終了時のロケットの高度 (位置) ん。 を求めよ. (3) エンジン燃焼終了後のロケットの運動を,ロケットを質量m質点とみなし、下図に示した座標系で考える ことにする。 図に示した質点に,ロケットに作用する全ての外力を示し, Newton の運動の法則を用いてロ ケットの運動方程式を導出せよ. 全ての外力は,下図を解答用紙に書き写して図示すること. (4) エンジン燃焼終了時のロケットの速度vo と高度ho を用いて, 導出した運動方程式の解を求めよ. (5) エンジン燃焼終了後から, 最高到達位置に達するまでの時間, hを求めよ. (6) ロケットの最高到達高度 (位置)を求めよ. (7) 最高到達高度から地表に戻るまでの時間, tr, を求めよ. (8)a=2g,to = 50秒であったとすると, (1) から (7) の結果を用いて, ロケットの最高到達高度と,打ち上げ られてから地表に戻るまでの時間を計算せよ.ただし,g=9.8m/s^ とする. X ho m 地表

回答募集中 回答数: 0
物理 高校生

解答お願いします

1図のように, 音波をよく反射する高さH の鉛直断崖の下部にトンネルがある。 トンネ ルの手前, 入口からの距離がXの地点をPと する。 一定の速さでトンネルに近づいてき た列車の先頭が, 時刻1=0に地点を通過 した。その瞬間に列車の先頭にある振動数。 の警笛が鳴り始め, 列車の先頭がトンネルに 進入した瞬間に警笛は鳴り終えた。 列車の先頭から距離 Lだけ離れた客車中に 00000 図 H トンネル はA君が,また断崖上の縁にはB君がいる。 A君には振動数がと つの異なる高さの警笛音が届いた。一方, B君には振動数の警笛音が届いた。 以 下の問いに答えよ。 ただし, 音の速さはVである。 また, 列車の高さ, トンネルの大き さ, A君およびB君の背の高さは無視してよい。 (1) A君には警笛音がどのように聞こえたか。 次のア~エの中から正しいものを1つ選 べ。 (ア) まず低い方の振動数の警笛音が聞こえ、 少しして振動数の警笛音が混じ りうなりが聞こえた。 その後、うなりが消えると同時に何も聞こえなくなった。 (イ)まず低い方の振動数の警笛音が聞こえ、 少しして振動数チュの警笛音が混じ りうなりが聞こえた。 その後, まずうなりが消え、振動数の警笛音が少しの間 残ったのちに何も聞こえなくなった。 (ウ)まず高い方の振動数の警笛音が聞こえ、少しして振動数の警笛音が混じ りうなりが聞こえた。 その後、うなりが消えると同時に何も聞こえなくなった。 (エ)まず高い方の振動数の警笛音が聞こえ、 少しして振動数の警笛音が混じ りうなりが聞こえた。 その後, まずうなりが消え, 振動数の警笛音が少しの間 残ったのちに何も聞こえなくなった。 (2) for 14, V を用いて表せ。 fB ア (3) 振動数の警笛音がA君に届いた時刻 A1 A2 を求めよ。 ウ (4) B君に聞こえた警笛音の振動数は時間とと もにどのように変化したか。 2図のア~カの中か ら正しいものを1つ選べ。 In エ 聞こえ カ (5) B君に警笛音が聞こえ始めた時刻 を求めよ。 (6) B君に警笛音が聞こえた時間間隔は警笛が鳴っ 始める時刻 2図 ていた時間間隔よりどれだけ短いか, あるいは長いかを答えよ。 V 聞こえ 終わる時刻 7)断の高さが距離 Xに等しく,列車の速さが 1/10 のとき, B君にはA君の何 倍の時間だけ警笛音が聞こえるか。

回答募集中 回答数: 0
物理 高校生

なぜ電圧が等しくなるのでしょうか?

電気容量 2.0F, C2=3.0μF の2つのコンデンサー, V=2.0×102V の電池, スイッチ Si, S2 を用いて,図の回 路をつくる。 S, を閉じて Cのコンデンサーを充電したの Sを切り、次に S2 を閉じて十分に時間が経過した。 C. C2のコンデンサーは,はじめ電荷をもっていなかった 200 203, 200 S₁ Sz/ C₁ C2 = とする。 C. C2 のコンデンサーにたくわえられた電荷はそれぞれ何Cか。 S, を切ってからSを閉じる前の Cの電荷をQとし, 求めるC,, C2 の電荷を Q.. Q2 とする。 電池を切りはなして S2 を閉じるので, 電気量保存の法則から、図の破線で囲まれた部分 この電荷は保存される。 すなわち, QQ,+Q2 で ある。 また, C, C の上側、下側の極板は, それ それ導線で接続されており、電荷の移動が完了す S2 C +Q C 5 ると,上側, 下側のそれぞれの極板の電位は等し くなる。 すなわち, 各極板間の電圧は等しい。 ■解説 S を閉じたとき, C1のコンデンサ ーにたくわえられる電荷をQ とすると, Q=CV=(2.0×10-) × (2.0×102) =4.0×10-4C S, を切り, S2 を閉じた後の C, C2 のコンデンサ 一の電荷を, それぞれ Q1 Q2 とする。電気量保 存の法則から, Q1+Qz=4.0×10-4 ... ① また,各コンデンサーの極板間の電圧は等しい。 なんで Q2 Q₁ S2 +Q₁ +Qzl == ..2 2.0×10-6 3.0×10-6 -Q₁ -Q2C 2 理すると, 式 ② から, Q2=3Q1/2となり, 式① に代入して整 Q=1.6×10-C, Q2 = 2.4×10-C 13. コンデンサー 145

回答募集中 回答数: 0