学年

教科

質問の種類

物理 高校生

ローレンツ力の範囲です。(4)について質問なのですがeは何故マイナスを付けないのでしょうか。

半導体を用いて磁束 密度を測定する。 図のように x,y,z軸をとり、電流の 担い手が電子である半導体を置く。この半導体は x,y, 方向の長さが α, b, c の直方体である。 x軸に垂直な 面をP, Qで,y軸に垂直な面をR, Sで表す。 (1) 半導体の面Rから面Sに向かってy軸の正の向きに 第19章・電流と磁場 161 A BI J [電流Ⅰ〔A〕 を流した状態で, 磁束密度B[T]の一様な磁場がx軸の正の向きに加わる ようにする。 このとき, 半導体の内部を平均の速さv[m/s] y 軸方向に移動する 電子(電気量 -e 〔C〕) は,磁場から力F [N] を受ける。 Fの向きと大きさを答えよ。 (2) x軸方向に電流を取り出さないものとすると、この方向に電場 Ex〔V/m〕 が現れる。 ① 電場 Ex が生じる理由を述べよ。 ② 電場 Exの大きさを求めよ。 ③ 定常状態で,面Pと面Qの間に生じる電位差 Vx 〔V〕 を求めよ。 ④ 電位が高いのは面P, 面Qのどちらか。 X ●(3) 半導体内の1m²当たりの自由電子の数をn 〔1/m² 〕 とする。 電子が移動する平均の 速さを,電流Iの関数として表せ。 OL ●●(4) α =5.0×10-3m, b=1.0×10m,c=5.0×10m, n=2.5×10 /m²の半導体を用い て磁束密度を測定した。 半導体に流す電流を I=2.0×10-A としたとき, 面Pと面 Qの間の電位差は Vx=5.0×10-V であった。 磁束密度Bの大きさを求めよ。 ただ し,e=1.6×10 - 19 C とせよ。

回答募集中 回答数: 0
物理 高校生

問3で、解答のマーカー部がわかりません。よろしくお願いします。

次に、図1の振動板を取り除き, ついたての隙間をふさぐ。 そして, ついたて から20cm離れた点 A の位置で水面に浮かべた小球を振動数 5.0 Hz で上下に振 動させると,点Aから波長10cmの円形波の水面波が発生した。 十分に時間が 経過すると,水面上には、ついたてに入射する波とついたてで反射した波が弱め 合う点を連ねた曲線が現れた。 図3中の実線(-) と破線 (-----) は,点Aを 中心に広がる波の、ある瞬間の隣り合う山と谷の波面をそれぞれ表している。た だし、波がついたてで反射する際に波の振幅および位相は変わらないものとする。 また、水面で発生した波は正弦波と考えてよいものとし、水槽内での波の減衰や 水槽の壁面での反射は無視して考えるものとする。 水面波 ① 1 ⑤ 5 ------ 2 ------ 66 ついたて 図 3 B 10 問3 ついたてに垂直で点Aを通る直線がついたてと交わる点をBとし (図 3), 水面上に波が弱め合う点を連ねた曲線が現れているときを考える。 点Aと 点Bの間を通る弱め合う点を連ねた曲線の本数として最も適当なものを 次の①~⑧のうちから一つ選べ。 ただし、 弱め合う点を連ねた曲線が点A または点Bを通る場合には,それらの曲線は除いて考えるものとする。 17 本 20cm n ③3 Ⓒ7 15 44

回答募集中 回答数: 0
物理 高校生

振幅が何故こうなるのか分かりません

66 波の式 軸の原点Oにある波源Sか 振動数f, 波長の波が左右 に出ている。 S から右に距離L だけ離れた所に壁Rがあり,波 はここで振幅を変えずに固定端 反射される。Sから出る波の0 における変位y, 時刻t に対して y = Asin 2nft と表されるものとする。 (0 ≤ x ≤ L) (2) 壁からの反射波の式y2 をx, tの関数として表せ。 (x≧L (1) Sから壁に向かう入射波の式をx,tの関数として表せ。 66 波の式 COS @= R (3) SR間で,合成波の変位は次式のように表される。 y = 2A sin (イ) (ア), (イ)を埋めよ。 また, 常に y = 0 となる位置xを整数 n = 0, 1,2…)を用いて表せ。 (4) S の左側に生じる波 (合成波) の振幅を求めよ。 また, 振幅が最大 となるときのLを入, n で表せ。 (東京理科大) 187 Level (1) ★ (2), (3) ★ (4) ★★ Point & Hint 力学では単振動の式は y=A sin wt として扱うことが多い。 2π の関係がある。 T 点0で起こることは, 3 4tの時間を隔てて位 置xでくり返される。 (1) 波が原点Oから位置 xまで伝わるのに要す る時間⊿t をまず調べる。 次に, 位置 x で時刻 tのときの変位は, 0 でのいつの時刻の変位と 等しいかを考える。 (2) (1)の結果から壁 R でのy2 の時間変化がわかる。 そこで, R から位置 xまで伝 わる時間を調べる。考え方は (1) と同じこと。 a IB cosa FB (3) 三角関数の公式 sinα土sinβ=2sin@th COS 2 (4)まず,Sから直接に左へ向かう波の式をつくる。 を用いる。

回答募集中 回答数: 0
物理 高校生

(3)で、 ・波面でどのように定常波ができるのか ・なぜ節線は定常波の節を通ることになるのか ・なぜABの中央が腹になるのか 詳しく説明していただきたいです。

基本例題46 波の干渉 物理 振幅が等しく, 波長 2.0cmの波が出ている。 図の実 水面上の 6.0cmはなれた2点A,Bから,同位相で 線はある瞬間の山の位置, 破線は谷の位置を表してい る。 波の振幅は減衰しないものとする。 イ 2つの波が弱めあう点を連ねた線 (節線)をすべ て図中に描け。 また, 節線は全部で何本あるか。 指針 (1) 弱めあう場所は, 実線(山) と 破線(谷)が重なる点であり, 節線はそれらを連 ねたものとなる。 (2) APとBP の距離の差が, 半波長の偶数倍で あれば強めあい, 奇数倍であれば弱めあう。 (3) 線分AB上では、互いに逆向きに進む波が 重なりあい, 定常波ができ ている。 解説 (1) 節線は, (2) 点Pはどのような振動状態にあるか。 AP=8.0 cm, BP=5.0cm とする。 節線が線分 AB と交わる点は, Aから測ってそれぞれ何cmのところか。 山と谷が重な る点を連ねた 線であり,図 P. 1 14.波の性質 171 基本問題 348, 349 のようになる。節線の数は6本である。 (2) AP-BP=3.0cmであり, 半波長1.0cm の 3倍(奇数倍)である。 したがって, P あうため、振動しない。 (3) 線分AB上には定常波ができており, 節線 は AB上の定常波の節を通る。 ABの中央の点 は腹であり,腹と節の間隔は波長の1/4 (0.5 cm), 節と節の間隔は半波長 (1.0cm) である。 これから 求める場所は, Aから 0.5, 1.5, 2.5, 3.5, 4.5, 5.5cmのところとなる。 基本例題47 波の屈折 物理 図のように,波が媒質I から媒質ⅡI へ進む。媒質 Ⅰ, ⅡI の中を伝わる波の速さは、それぞれ2v, vである。 面AB Q Point A. Bは同位相で振動しているので, A,Bを結ぶ線分の中点は,定常波の腹になる。 ?? I 基本問題 351 B C

回答募集中 回答数: 0
物理 高校生

(3)で、なぜABの中央の点が腹になるのか分かりません。詳しく教えていただきたいです。

基本例題46 波の干渉 物理」 水面上の6.0cmはなれた2点A,Bから,同位相で 振幅が等しく, 波長 2.0cmの波が出ている。 図の実 線はある瞬間の山の位置, 破線は谷の位置を表してい る。 波の振幅は減衰しないものとする。 ① 2つの波が弱めあう点を連ねた線(節線)をすべ て図中に描け。また, 節線は全部で何本あるか。 指針 (1) 弱めあう場所は, 実線(山) と 破線(谷)が重なる点であり, 節線はそれらを連 ねたものとなる。 (2) 点Pはどのような振動状態にあるか。 AP= 8.0 cm, BP=5.0cm とする。 (3) 節線が線分 AB と交わる点は,Aから測ってそれぞれ何cmのところか。 (2) APとBPの距離の差が, 半波長の偶数倍で あれば強めあい、奇数倍であれば弱めあう。 (3) 線分AB上では、互いに逆向きに進む波が 重なりあい, 定常波ができ ている。 解説 (1) 節線は, 山と谷が重な る点を連ねた 線であり,図 P. 14.波の性質 171 基本問題 348, 349 のようになる。 節線の数は6本である。 (2) AP-BP=3.0cmであり, 半波長1.0cm の 3倍(奇数倍) である。 したがって, P あうため、振動しない。 (3) 線分AB上には定常波ができており, 節線 は AB上の定常波の節を通る。 ABの中央の点 は腹であり,腹と節の間隔は波長の1/4 (0.5 cm), 節と節の間隔は半波長 (1.0cm) である。 これから 求める場所は, Aから 0.5, 1.5, 2.5, 3.5, 4.5, 5.5cmのところとなる。 基本例題47 波の屈折 物理」 図のように,波が媒質I から媒質ⅡI へ進む。媒質 Ⅰ, Ⅱ の中を伝わる波の速さは、それぞれ2v, vである。 面AB QPoint A, Bは同位相で振動しているので, A,Bを結ぶ線分の中点は,定常波の腹になる。 ?? I SE HA 基本問題 351 B C

未解決 回答数: 1
物理 高校生

(3)で位相のズレとかは考えなくて良いのですか?

の角周波数 は, 2π 2×3.14 = 3.14×102rad/s T 2.0×10-2 また, XL=wLなので, (2)の結果を用いると, 2.0×10²=(3.14×102)×L L=0.636H @= 368 548. インピーダンス 解答 (1) (a) (2) (a) (3) (a) V R2+ wL= 1 [A] (b) 0A R 47²L² T² Vo (2) (b) 4²L² T² R²+ V -[A] (b) 2πL と表される。 コイルに加 T わる電圧の位相は, 抵抗よりも π/2 進 んでおり,回路のインピーダンス Za [Q] は, 図1のように示される。 した がって, Za=√R2+(wL)=R'+ 4π²L² T2 7² A2C2 [Ω] /2(R2+ 2 R² + 指針問題図(a), (b) では,いずれも直列に接続されており, 交流電 圧を加えたとき,等しい電流が流れる。 電流に対する電圧の位相は、抵 抗では等しく, コイルではπ/2進み, コンデンサーではπ/2遅れる。 解説 (1) (a) 十分に時間が経過したとき,定常電流が流れる。 こ のとき, コイルの誘導起電力は0であり, コイルは抵抗0の導線と みなせるので,電流Iは, I=1 [A] V R (b) 十分に時間が経過したとき, コンデンサーは充電を完了しており 直流電流を通さない。 したがって,電流は0Aである。 (2) (a) コイルのリアクタンスは, 1 wC 0.64 H [Ω] V₁ WLA 図 1 T2 42C2 〔A〕 (b) コンデンサーのリアクタンスは, と表される。 コ ンデンサーに加わる電圧の位相は, 抵抗よりも π/2 遅れており,回 路のインピーダンスZ [Ω] は、図2のように示される。したがって, T 2лС 1 T 2₁= √ R² + (C)² = √ R² + 17³C² (92) Zb=1 [Ω] WC 42 (3)(a)加えた電圧の実効値を Va とすると, 最大値 Vo を用いて Za R 図2 1 wC Vo Va= -〔V〕である。電流の実効値を Iaとすると, Ia=Va/Zaの √√2 関係が成り立つ。 を求めたの Lの値を計算する。 ●コイル(またはコンテ ンサー)のリアクタンス をXとすると抵抗とも 素子の電圧の位相差 /2なので, Z=√Re+X2 となる。

未解決 回答数: 0