学年

教科

質問の種類

物理 高校生

クについてなのですが、なぜ角度を大きくしても波長は変わらないのですか? この答えは②です

キ ク 問5 次の文章中の空欄 に入れる式と語句の組合せとして最 も適当なものを、後の①~⑥のうちから一つ選べ。 6 図6のように、 底面が水平で十分に大きい水槽に水を入れ, 一定の厚さの ガラス板を水槽の底に沈める。ガラス板を沈めていない部分を領域1,ガラ ス板を沈めて浅くした部分を領域2とする。領域1で振動板を水面に触れる ようにして一定の振動数で鉛直方向に振動させたところ,水面波が伝わり, 領域1と領域2の境界面で屈折した。このときの波面の様子を写真に撮って 調べたところ、図7のようになっていた。 領域1を伝わる波の波面と境界面 のなす角度は45°,領域2を伝わる波の波面と境界面のなす角度は20°で あった。このとき,領域1を伝わる波の速さと領域2を伝わる波の速さ 2比は, 102 = キ である。 また, ガラス板の位置を変えて、領 域1を伝わる波の波面と境界面のなす角度を45°より大きくしたとき,領域 2を伝わる波の波長は、図7の場合と比べて ク ガラス板 . 領域2 領域 1 図 6 ZSME 振動板 ② (3) 領域2 ガラス板 キ 波面 : 領域 1 sin 45° sin 20° sin 45° sin 20° sin 45° sin 20° sin 45° sin 70° sin 45°: sin 70° sin 45° sin 70° 図 7 20 Warni ク 大きくなる 変わらない 小さくなる 大きくなる 変わらない 小さくなる MSR

回答募集中 回答数: 0
物理 高校生

黄色でマーカー引いたところがどうして2πx/16となるのか分からないです。教えてください🙇‍♀️

入 =2.0mである。 波の速さをv[m/s」として、 発展例題 30 正弦波の式物理 図のような正弦波が, x=0を波源として, x 軸の正の向きに進行している。 実線の波形から 最初に破線の波形になるまでの時間は, 0.10s 0.100 であった。 実線の状態を時刻 t=0s とする。 (1) 波の伝わる速さ, 周期, 振動数を求めよ。 (2) t=0sにおける波形を式で示せ。 (3) x=0mの媒質の変位y〔m〕 , 時刻t [s] を用いて表せ。 指針 正弦波の波形や, 単振動をする媒質 の変位は,いずれも sinを用いた式で表される。 それぞれの式は、波の波長や周期, 振動のようす をもとにして考えることができる。 解説 (1) 波は 0.10s間に2.0m進んで 2.0 0.10 おり, 速さは, v=· 図から, 波長 = 16m なので,周期Tは, T= 入_16 V 20 = 0.80s =20m/s 振動数fは, f= =1.25 1.3Hz T 0.80 (2) 図の波形において, 1波長分 (入=16m) はな れた位置どうしでは位相が2異なり, t=0の とき x=0の媒質の変位はy=0 なので, 位置 2 1 CATO -1 -2 y〔m〕 10 発展問題 356 進む向き 20 088 x(m) NEOT 126 W= 2π 77" xでの位相 (sin の角度部分)は、2016=7 8 と表される。 また, x=0 から x>0 に向かって まず波の山ができており、波の振幅が2.0mな ので,求める波形の式は, y=2.0 sin- DIVER A (3) 媒質の振動では1周期 (T= 0.80s) 経過する ( と位相が2進み, x=0の媒質の変位は,図か ら,t=0のときにy=0 なので、時刻t におけ る位相 (sin の角度部分) は, 2π- t =2.5t と (部分)は,270.80 表される。 また, x=0の媒質は, t = 0 から微 小時間後に負の向きに動くので、求める変位y の式は, y=-2.0sin 2.5t TIC 199 TX 8

回答募集中 回答数: 0
物理 高校生

問4 カについて、ドップラー効果の考え方で波長を考えているようなのですが、よくわかりません。 音源側とか観測者側(?)みたいな関係があるのだとは思いますが、どうやって考えるんですか?

図2のように、水素ガスを封入した放電管に高電圧を加えると,水素ガスから特有 の光が発せられる。発生した光をプリズム分光器に入射して、 CCDカメラで撮像した。 4.0 高電圧 水素 ガス 放電管 ( プリズム分光器 図 2 図 3 - 22- 0 CCDカメラ 問3 次の文章中の空欄 オに入れる式と語の組合せとして最も 一適当なものを 次ページの①〜⑧のうちから一つ選べ。 28 7.0 波長 〔×10-7m] プリズム分光器により分光した光をCCDカメラにて撮像すると, 図3のように 可視光領域のいくつかの波長に輝線(線スペクトル) がみられた。これらの波長には 規則性がある。 ボーアは量子条件と振動数条件を提唱し,この規則性を説明した。 電子がもつことができるエネルギー (運動エネルギーと無限遠を基準とした静電気 力による位置エネルギーの和) En は,リュードベリ定数を Roo, 光速をc, プラン ク定数をんとして,正の整数n を用いると, En =-- Roch のようにとびとびの値 として表される。 水素原子内で電子がエネルギーの高い軌道から低い軌道に移ると 2 n² き, その差のエネルギーを1個の光子として放出する。 この光の波長をすると 光子のエネルギーeは,e= ウ と表される。このことから, 放出される光の波 長のうち最も短いものは I と求められる。 この電磁波の種類はオ である。 P = hv ① 3 (4) (5) 6 ⑦ 8 ウ h λ h 2 h 入 カ キ h 入 hc 入 hc 入 hc X hc 問4 次の文章中の空欄 I ① 短く 狭く Roo RO ② 短く 広く 1 R 1 RO Roo Roo 1 RO ものを、後の①~④のうちから一つ選べ。 1 RO 29 オ 3 長く 狭く - 23- 紫外線 X線 物理 紫外線 X線 キ に入れる語の組合せとして最も適当な 紫外線 水素原子がプリズム分光器に近づいているときに発光した場合を考える。 水素 原子の速さが光の速さに比べ十分に小さいため、音のドップラー効果と同様に 考えると, 光子の波長はボーアの理論で求められる波長より カ なると考え られる。 放電管内の水素ガスは, 熱運動により様々な速度で動くため、実際には 輝線に波長の幅が見られる。 この幅は水素ガスの温度が高いほどキなる。 de X線 紫外線 X線 4 長く 広く

未解決 回答数: 1
物理 高校生

問9で、sinθ=√3/4なのは何故ですか?

例題 2 屈折波の波面 図のように,平面波が境界面に達した。 屈折 波の波面を作図せよ。 ただし, 媒質 I に対す る媒質ⅡIの屈折率を2 とする。 2 (+式 (9)) から, 01=n12=2 V₂² V₁ T 境界面 -= 1212 V₁ 指針 屈折の法則 -=n1z(p.152・式(9))から, 媒質ⅡIにおける波の速さが,媒質 V2 Iにおける速さの何倍になるかを求める。 ホイヘンスの原理にもとづいて素元波を描 き, 屈折波の波面を作図する。 解 媒質 I, I における波の速さをそれぞれ v1, v2 とすると, ma 逆の屈折る V₁ V2 V2 であり、媒質 Ⅱ における波の速さは, 媒質 Ⅰ における速さの1/12/2になる。図のように,B2 からAB におろした垂線とA,B との交点 B2C の素元波 (半 をCとして, B, から半径 円) を描く。 このとき, B2 からこの素元波に 2 引いた接線が, B2 を通る屈折波の波面となる。他の波面は,入射波の波面と境界面の『 交点から,この接線に平行な線を引くことで求められる。 B1 B2C 2 B2 入射波 の波面 媒質 Ⅰ A2 媒質 ⅡI] 屈折波 の波面 入射波 の波面 媒質 Ⅰ 媒質 Ⅱ 問9 類題例題2で,入射波の波面と境界面のなす角を60° とする。このときの屈折角 を0として,sin0 の値を求めよ。答えは分数のままでよく, ルートをつけたままでよい。 8 平面波 障害物に を送ると, にまわりこ 回折は, 部分にも すき間 (a))。 した る (図 波長よ の

回答募集中 回答数: 0