学年

教科

質問の種類

物理 高校生

この問題の(4)のことで緑線で囲った部分の言っていることがよく分からないので教えてほしいです。

70. <ピストンで封じられた気体〉思考 図1のように,摩擦なしに動くピストンを備 えた容器が鉛直に立っており,その中に単原子 分子の理想気体が閉じこめられている。容器は 断面積Sの部分と断面積 2S の部分からなって いる。ピストンの質量は無視できるが,その上 に一様な密度の液体がたまっており,つりあい が保たれている。 気体はヒーターを用いて加熱 することができ,気体と容器壁およびピストン との間の熱の移動は無視できる。 真空 真空 真空 2S S 2 12 液体 液体 h 2 液体 ピストン 気体 h+x 気体 h 気体 2 ヒーター 図 1 図2 図3 また,気体の重さ, ヒーターの体積, 液体と容器壁との摩擦や液体の蒸発は無視でき,液体 より上の部分は圧力0の真空とする。 重力加速度の大きさをgとする。 次の問いに答えよ。 〔A〕 まず,気体、液体ともに断面積Sの部分にあるときを考える。 このときの液体部分の 高さは今である。 2 h (1)初め,気体部分の高さは12,圧力はP。であった。液体の密度を求めよ。 (2) 気体を加熱して,気体部分の高さを1からんまでゆっくりと増加させた(図2)。この 間に気体がした仕事を求めよ。 (3)この間に気体が吸収した熱量を求めよ。 〔B〕 気体部分の高さがんのとき, 液体の表面は断面積 2Sの部分との境界にあった(図2)。 このときの気体の温度は T であった。 さらに, ゆっくりと気体を加熱して, 気体部分の 高さがん+x となった場合について考える (図3)。 1 x>0では,液体部分の高さが小さくなることにより, 気体の圧力が減少した。 気体の 圧力Pを, xを含んだ式で表せ。 (2)x>0では,加熱しているにもかかわらず,気体の温度はTより下がった。 気体の温 度Tを x を含んだ式で表せ。 気体部分の高さがんからん+xに変化する間に, 気体がした仕事 W を求めよ。 ④ 気体部分の高さがある高さん+X に達すると, ピストンをさらに上昇させるために必 V要な熱量が0になり, xがXをこえるとピストンは一気に浮上してしまった。Xを求 めよ。 [11 東京大〕

解決済み 回答数: 1
物理 高校生

物理の熱効率についてです。 写真の問題の(4)の熱効率を求める時に、公式が e=(Qin-Qout)/Qin=W’/Qin となるのはわかるんですが何がQinで何がQoutで何がW’なのかがよくわからなくて、結果的になぜ赤ででかこってるように公式に代入されるのかがわかり... 続きを読む

例題4 気体の状態変化・熱効率 (Pa) B 2p 単原子分子理想気体" [mol] に対して,図男[] の3つの過程をくり返して状態をゆっくり 変化させた状態Aの気体の温度を T[K],気体定数を R[J/ (mol・K)] とする。 BCは等温変化であり,その際,気体 は外部から1.4nRT [J]の熱量を吸収した。 次の各量をn, R, T を用いて表せ。 (1) 状態 B の温度 TB [K] A C 0 V 2V 体積(m²) (2)A→Bで,気体がされた仕事 WAB [J] と気体が吸収した熱量 QAB [J] (3)CAで,気体がされた仕事 WcA[J] と気体が吸収した熱量 Qca[J] (4) このサイクルを熱機関とみなしたときの熱効率e(有効数字2桁) p.439 指針 ABは定積変化, BCは等温変化, CAは定圧変化である。 (1)ボイル・シャルルの法則 (p.110 (6)式) より TB = 2T[K] (2)ABは定積変化であるから WAB=0J, QAB = 4UAB 3 = nRT [J] 15 2 (3)C→Aは定圧変化であるから,状態Aでの状態方程式 V = nRT を 用いると,気体が外部にした仕事 WcA' [J] は Wca'=p(V-2V)=-pV=-nRT よって,気体がされた仕事は WCA=-WcA'=nRT [J] また,気体が吸収した熱量は, 熱力学第一法則 (p.122 (25) 式)より 5 QCA=4UCA - WCA == 12/23nRT-nRT=-1/2nRT[J] 2 (4)BCは等温変化であるから, 気体が外部にした仕事 WBc'[J] は WBc'=QBc=1.4nRT[J] よって,熱効率の式「e=W' -」 (p.135(47) 式) より Qin e= WAB' + WBc' + WCA' QAB + QBC = 0+1.4nRT- nRT 4 (3/2)nRT +1.4nRT ≒ 0.14 29 類題4単原子分子理想気体に対して、図の4つの 過程をくり返して状態を変化させた。 この (Pa) サイクルを熱機関とみなし カ B

解決済み 回答数: 1