学年

教科

質問の種類

物理 高校生

(2)について質問です。 (2)ではAとBを合わせた力学的エネルギーの保存を考えてますが、Aと Bそれぞれで力学的エネルギーは保存されないのでしょうか?

基本例題 27 力学的エネルギーの保存 117~121 解説動画 定滑車に糸をかけ, 両端に質量mおよびM (M>m) の小球 A, Bを取りつけた。 Aは水平な床に接し, Bは床からんの高さに保持 されて糸はたるみのない状態になっている。 いま, Bを静かにはな すとBは下降を始めた。 重力加速度の大きさをg とし,床を高さの 基準とする。 (1) Bが床に衝突する直前の A, B の速さをvとする。 このとき, A, B がもつ力学的エネルギーはそれぞれいくらか。 (2) B が床に衝突する直前の A,Bの速さ”はいくらか。 A B 指針 A,B には,重力(保存力)のほかに糸の張力 (保存力以外の力)もはたらくが,張力が A, B にする仕事は,正, 負で相殺するので, 力学的エネルギーは保存される。 A:0+0=0 B: 0+Mgh=Mgh 解答 (1) B が衝突する直前の力学的エネルギ A, B をあわせて考えると、 全体の力学 エネルギーは保存されるので ーはそれぞれ 1 A : 121m²+mgh 1 2 B: Mv² +0=Mv² (2) 最初 (Bをはなした直後) の力学的 よって v= エネルギーはそれぞれ 0+Mgh=(1/12mi mu2+mgh+Mv2 gh) + 1/12 Mv² 2(M-m)gh M+m 21

回答募集中 回答数: 0
物理 高校生

ダイオードと豆電球の問題なのですが、Ⅲで答えがそのようになる理由がわからないので説明して頂きたいです。よろしくお願い致します。

第2問 ダイオードは,順方向に電圧を加えると, 流れる電流が電圧とともに急激に増大する特性をもつ。電球は,電圧 の上昇とともに熱としてエネルギーが失われるために、電圧とともに電流の上昇が徐々にゆるやかになる。電流と 電圧の特性が図2-1の曲線で表されるダイオード1個 (D)と、電流と電圧の特性が図2-1の曲線bで表され る特性の等しい電球 2個 (L, Lg)を, 図2-2のように起電力 V で内部抵抗が無視できる直流電源と接続した。 直流電源の電極側の点Bは接地した。 以下で、ダイオード、電球の抵抗値とは,それらの両端の電圧を,それら に流れている電流で割ったものとして定義する. I 図2-1に示す特性のダイオードと電球について以下の問いに答えよ。 (1) ダイオードの両端の電圧が0.70Vのときのダイオードの抵抗値はいくらか、 図2-1のグラフから読み 取った値を使って有効数字2桁で求めよ. (2)電圧が上昇するにつれて,ダイオードの抵抗値はどのように変化するか、以下の選択肢から選べ. (ア) 急激に増大する (イ) 急激に減少する (ウ) 変化しない (3)電球の両端の電圧が0.30Vのときの電球の抵抗値はいくらか。 図2-1のグラフから読み取った値を 使って有効数字2桁で求めよ. (4) 電圧が上昇するにつれて、 電球の抵抗値はどのように変化するか、以下の選択肢から選べ. (ア) 急激に増大する (イ) 急激に減少する (ウ) 変化しない -4- 九州工改題) 電流 [A] 3.0 2.0 1.0 Dale A. 0 1.0 0 0.5 電圧[V] 図2-1 直流電源 V [V] B L1 L2 図 2-2 -5- b 1.5 2.0 A 09 1124 D 076

回答募集中 回答数: 0
物理 高校生

(2)について質問です 2枚目が解答なのですが、オレンジの線を引いてるところが分かりません。なぜmは同じになるといいきれるのですか??

(カ) 354 マイケルソン干渉計■ 図のように,光源 Sを出た波長の単色光が, Sから距離 Ls にある 半透鏡Hにより上方への反射光と右方への透過光の光源S 2つに分けられる。 反射光は,Hから距離 LAに固 定された鏡Aで反射して同じ経路をもどり,一部が Hを透過してHから距離 LD 離れた検出器Dに到達 する。 一方, Sを出てHを右方へ透過した光は, 鏡 D [兵庫県大 改] 347 鏡ATE LA 鏡 B 半透鏡H -LS- -LB- AL AL LD 検出器 D Bで反射して同じ経路をもどり、一部がHで反射してDに到達する。 これら2つの光が 干渉する。 初めのHからBまでの距離は LB (LB>LA) で, Bは左右に動かすことができ る。Hの厚さは無視でき, 鏡および半透鏡において光の位相は変わらないものとする。 X Bを少しずつHに近づけるとDで検出される光の強さは単調に増加し, ALだけ動い たとき,最大となった。 逆に, Bを少しずつHから遠ざけると光の強さは単調に減少 し,初めの位置から 4L だけ動いたとき最小となった。 波長をALで表せ。 Bを初めの位置にもどし, 波長を入から少しずつ大きくしていく。 Dで検出される 光の強さは単調に増加し,+4のとき最大となった。 LB-L』を入とで表せ。 次に,光の波長を入にもどし, Bを初めの位置から動かして, Hからの距離がL』 に 等しくなるまで少しずつ動かした。 この間のDで検出される光の強さを観測すると, 250 回最小値をとることがわかった。 このとき,(2)における入と 4入の比を求め よ。 入 [16 新潟大 改] ヒント 353(2)隣りあう2つのスリットを通る光の経路差= (回折後の経路差) (入射前の経路差) 354 (3)250 回目の最小値をとったときの,HとBの距離はLa+24Lであり,最小値は 44L ご とに現れる。

回答募集中 回答数: 0
物理 高校生

(1)がわかりません 解説ではグラフの値をV=E-rIに代入して連立方程式でrを求めているのですが 電流計で測られた値は、分岐した電流じゃないんでしょうか。どうして代入できるのかわかりません 質問の意図が読み取れなかったらごめんなさい

旧ル電のは J TV で 26 Q る電 78 18 (a)) (2) AB間に抵抗xを接続するとき (a) CD 間の電圧Vを求めよ。 (b) 抵抗x と (接地) R と並列に電気容量Cのコンデンサーを接続したとき, コンデンサーの電位 の低いほうの極板に帯電する電気量Qを求めよ。」 例題80 414 電池の起電力と内部抵抗の測定■ 内部抵抗r[Ω],起電力 E[V] の電池があ る。これを用いて図1の回路を構成し, 可変抵抗Rの値を変えながら電流と電圧を測定 したところ、 図2を得た。 電流計の内部抵抗と, 電圧計に流れる電流はないものとする。 (1) 起電力 E[V] を求めよ。 [2] 内部抵抗 [Ω] を求めよ。 (3)R=r の状態は,図2のA, B, C, D,E,Fのうちどこか。 (4) この電池の正・負極を電線でつなぐ (ショートする) ときに電池を流れる 電流I [A] を求めよ。 図 1 電圧(V) 2 A B. 0 1 2 3 電流(A) 図2 (5) 状態Aにおいて,Rの値 R [Ω] およびRで消費される電力PA [W] を求めよ。 (6) 状態 Aにおいて, 内部抵抗による電圧降下 V, [V], rで消費される電力 P, [W] を 求めよ。 例題80 V2 [[/s]

未解決 回答数: 1
物理 高校生

この質問に答えて!

4 (1)Ua= Cr(p-pal) Vo + Cop(V-Va) R (5) 圧力: 温度: -p (V-Va) U₁ = Capo (V - V₁) + Cv (p-po) V [考え方 R - po (V - Vo) から熱が 変化と (2) 考え方参照 考え方 (1) 気体の内部エネルギーの増加は、外 から与えられた熱量と仕事の和に等しい。 圧力po. 体積Voのときの温度をTとし,p, Vのときの温度をTとする。 また,過程Aで, P.Voのときの温度をT,過程で、po. Vのときの温度をT』 とすれば、次の4つの 状態方程式が成り立つ。 PoVo=RTo PV=RT pV = RT poV = RTs)..... 過程Aでの内部エネルギー増加U』は、 Us=Cr(Ta-To) + C, (T-TA) -p(V - Vo) PV の関係が y= である。 はじめの の圧力〔 1x ゆえに、 ① P = ここで, logio ~ ② ②式に①式から得られる To TA, T を代入 すると, Cr(p-po) Vo +Cpp(V-Vo) U₁ = R さらに, -0.0 -p (V - Vo) 過程Bでの内部エネルギーの増加 UB は, UB = C, (Ts-To-po (V-Vo) + Cv (T - TB) なので、 log10 対数法則 [10] ③れば せ ③式に①式から得られる To T, T を代入の?p= すると, UB = Cppo (V-Vo) + Cr(p-po)V R -po(V-Vo) (2)過程A, B のどちらでも,最初と最後の状 態は同じなので, UA = UB となる。 よって、 ② ③式を代入すると, Cp(p-po) (V-Vo)-Cr(p-po)(V-Vo) となり, R =(p-po) (V-Vo) Cp-Cv=R 240 定期テスト予想問題の解答 すなわち 次に ヤルルの 1 > 273 ゆえに、 (補足) を求める y=1 と表す。 対数関数 k loga

未解決 回答数: 0
物理 高校生

赤線のところがわからないので教えてほしいです

と を 60 Chapter 2 力のつり合い 〈問2-3> 右ページ上図のように、2本の糸がそれぞれ角度45°で質量mのおもりを吊るし ている。このときの2本の糸の張力の大きさをそれぞれ求めよ。 ただし、 速度の大きさをgとする。 <解きかた この場合は, ませんね。 〈問2-1のように単純に力のつり合いの式を立てることがで 問2-3 糸 1 まずおもりにはたらく力を図示するという手順は同じです。 そこで力を鉛直方向と水平方向に分解してつり合いの式を立てるわけです 45° 45° ページ真ん中の図のようになります。 そして、張力を鉛直方向と水平方向に分解して、そのそれぞれについて 力のつり合いの式を立てると |求める張力の大きさをそれぞれT1 T2 とすると, おもりにはたらく力は右 物体にはたらく力を分解すると・・・ T₁sin 45° T2sin 45° T2 T 鉛直方向: T sin45° + T2 sin45° = mg ...... D 水平方向: T cos45°=Tzcos45° ・・・・・・② | sin45°=cos45°=- ですから、①②式を解いて v2 mg T₁ = T₂ = √2 ・・・答 このように、力のつり合いを考えるうえで、力を分解する方法はよく使われます。 この例のように、鉛直と水平に分解するのがいちばんオーソドックスですが, 他の分解のしかたでも問題は解けます。 どのように分解すれば,いちばんきれいに解けるかを意識するようにしましょう。 45° 45° さ Ticos 45° T2cos 45° 角をなす力Fの 水平 鉛直成分は Fcos 0, Fsin0に なるのじゃ 糸2 2-4 の分解 61 ここを理解したら どんぐりを 食べようっと 02 mgの分解成分 F F sin 0 0 F cos 0 000

未解決 回答数: 0