学年

教科

質問の種類

物理 高校生

高校物理力学です。なぜBにFは働いていないのですか?Bに直接Fが接していないからですか?

4-2 運動方程式の立てかた 115 質量 m F A 3 BINDING PLA-CLIP ref: 3255-464 4th 〈問4-2 滑らかな床の上に、質量が無視できる糸でつながれた質量mの物体Aと質量3 の物体Bがあり、右ページ上図のように, 物体Aを力Fで引っ張っている。物体A Bの加速度をα 糸の張力をTとして、 以下の問いに答えよ。 ただし、右向きを ステ 正とする。 41 物体Aに関する運動方程式を立てよ。 2) 物体Bに関する運動方程式を立てよ。 3)αをFとm で表せ。 2物体の運動を扱う問題です。 まずは着目する物体をAとして, 運動方程式を立て、 その後、 着目する物体をBに変えましょう。 解きかた (1) まず、物体Aにはたらく力を図示しましょう。 問4-2 a 質量 3m B 物体Aにはたらくカ 物体の加 物体Aにはたらく力は、重力,垂直抗力, F,張力Tですね。 運動方向の力は,力Fと張力Tですから, 右向きを正とするとき 物体Aの運動方程式: F-T = ma・・・ 注目する物体が 受ける力」のみで判断 正 T F (2) 物体Bにはたらく力は、重力、垂直抗力, 張力Tですから,同様に考えて 物体Bの運動方程式: T=3ma・・・ 答 NAmg ここで注目すべきは,物体Bの運動方程式には,力Fが出てきていないことです。 物体Aが力Fで引っ張られているからといって, 物体Bも力Fで引っ張られてい るわけではなく、物体Bはあくまで張力Tで引っ張られているのです。 「物体Bも力Fで引っ張られてそうだな」という思い込みは禁物です。 着目した物体にはたらく力を1つ1つ図示し, それをもとに運動方程式を立てる, これを徹底してくださいね。 人 にする 同 <解きかた (3) 立てた運動方程式を見ると, αをFとで表すには、Tを消す必要があり ます。 そこで、2つの運動方程式をそれぞれ足し合わせると 物体B にはたらく 正 NB T F=4ma F これより a= 4m では,もう一問やってみましょう。 この問題で、 着目する物体を決める重要性がわかったのではないでしょうか。 D = 1-7 3mg 物体Bに力がはたらいていると 思った人は要注意じゃ はたらく力を図示するステップを踏めば、 間違いは減るぞい W!! Aは糸からも 引っ張られておるぞ 4 物体Bには Fははたらいて いないんだね

回答募集中 回答数: 0
物理 高校生

大至急です!!!!!!!!!!!!!! 物理の実験なんですけど、この実験から何がわかって何を伝えればいいのかわかりません。助けてください! 3枚目の紙をまとめて提出します!

課題の背景 「物理基礎」 1学期力学分野 パフォーマンス(レポート) 課題 力学は, 物体にはたらく力に着目することによって, 現実に起こる現象を解明・予測する学問で す。一見すると予想と反する現象が観測されたとしても, 物体にはたらく力に基づいて注意深く考 察すると,一貫した原理・原則に従って現象が生じていることを確認できます。 また, 力学の考え 方 力のつりあいや作用・反作用の法則等) を用いると, 物体が静止するという何の変哲もない現 象から, 物体が持つ固有の性質(質量,体積,密度など) を知ることができるのです。 課題 右図に示すように, 台はかりの上に水の入ったビーカーを乗せて, ばねは かりに取り付けられた糸に物体をつるして水中に完全に沈めます。 このと き物体を沈める前と後の台はかりの示す値とばねはかりが示す値をそれぞ れ測定します。 上述の実験を同じ質量 (約115 ~ 120g 程度とする) で異なる 体積を持つ球形の物体 A, B, C (A: 直径4cmの球, B: 直径5cm の球, C:直径 6cmの球) の場合で行います。 ばねはかり 異なる体積の物体を沈めたときの測定結果から, 台はかりが示す値の変化 の規則性について、 以下の点に注意を払いつつ, 分かりやすくまとめてみま しょう。 必要であれば, 水の密度を1.0g/cm3として考えても良いです。 (1) 実験手順を簡潔に示して, 実験によって得られた測定値を正確に, 整理して表にまとめる。 (2) 台ばかりの値の変化の規則性について, 力のつりあいや作用・反作用の法則に基づいて解釈し て,分かりやすくまとめる。 台はかり 本課題を踏まえた発展的内容 上記の実験で見出された法則を活用して, 右図のような複雑な形状を持つ未 知の物体Xの密度 (水の密度よりも大きい) を測定する簡潔な方法を提案し てください。 また, 水の密度よりも小さい物体の密度を測定するにはどのよう にすれば良いでしょうか。 ■本課題における評価ポイント 課題レポートでは,科学的な思考/表現プロセスの全体が評価対象になるので、他の人にも伝わる ように,自分の考え方を, 言葉 数式・図表などを用いながら、 分かりやすく説明してください。 なお,本課題では考察部分の記述から主に次の点について評価します(ルーブリックを参照)。 力のつりあいと作用・反作用の法則を適切に使いこなしている。 • 台はかりが示す値の変化について, ばねはかりの値と関連づけるなど, 実験結果に基づいて科 学的に妥当性の高い考察を提示している。 • 各物体にはたらく力の矢印の作図をするなど, 図表や言葉数式などを用いて, 分かりやすく 書かれている。

回答募集中 回答数: 0
物理 高校生

丸印が着いているところの解き方を教えてください

針 題 1 等加速度直線運動の式 正の向きに 10.0m/sの速さで進んでいた自動車が,一定の加速度で 速さを増し、 3.0 秒後に正の向きに 16.0m/sの速さになった。 (1)このときの加速度はどの向きに何m/s2 か。 (2) 自動車が加速している間に進んだ距離は何mか。 (3)こののち自動車がブレーキをかけて,一定の加速度で減速し, 40m進んで停止した。 このときの加速度はどの向きに何m/s2 か。 初速度の向きを正とおいて、速度や加速度の符号に注意して式に代入する。 (1) 加速度をα[m/s2] とする。 「v=vo + at」 (p.22 (8) 式) より 16.0 = 10.0 + α x 3.0 ② これをαについて解くと a = 2.0m/s2 >0 (正の向き) であるから, 加速度は正の向きに 2.0m/s2 1 (2)進んだ距離を x[m] とする。 「x=vot+1af」 (p.22(9) 式)より x = 10.0×3.0 + × 2.0 × 3.02 よって x = 39m 2 (3) 加速度をα'[m/s2] とする。 「v2vo=2ax」 (p.22 (10)式)より 02 - 16.0° = 2a′ × 409 これをαについて解くと α = -3.2m/s2 a' < 0 (負の向き) であるから, 加速度は負の向きに 3.2m/s² 正の向きに 8.0m/sの速さで進んでいた自動車が,一定の加速度で速 さを増し, 4.0秒後に正の向きに 14.0m/sの速さになった。 (1)このときの加速度はどの向きに何m/s' か。 (2)自動車が加速している間に進んだ距離は何mか ③ こののち自動車がブレーキをかけて,一定の加速度で減速し、 35m進んで停止した。このときの加速度はどの向きに何m/s2 か。

未解決 回答数: 1
物理 高校生

2枚目の写真が自分の考え方なんですけどなんで3倍振動と5倍振動にならないんですか?教えてください🙇

引き出す てて音を聞いた。 すごとにBで開 ・振動数は何Hz その後、C 聞こえる音はそ なお、クインケ 16 東海 さがある。た 弦から出る 00Hzのおんさ なりが生じた。 じなかった。 -171 図のように,円筒形のガラス管を空気中で鉛直に立て,その中に 水を入れる。 ガラス管の底と水だめはゴム管によりつながれており, ×180 水だめを上下することにより管内の水位を調整できる。いま,管口 近くにスピーカーを置き, 振動数が450Hzの音を出し続ける。 この状態で管内の水面を管口近くまで上げ, そこから水面を徐々 最も大きく聞こえ, 距離が 55.0cmのときに再び音が最も大きく聞 に下げていくと, 管口から水面までの距離が170cmのときに音が こえた。このとき,スピーカーから出ている音の波長はアcm, 音の速さは m/sである。 ガラス 2 スピーカー 水だめ cmの位置である。ま ここで、管口から水面までの距離を55.0cmに固定する。このと き、管内の空気の密度が時間的に変化しないのは管口から [18 千葉工大] 182 た水面の位置をそのままにして、スピーカーから出る音の振動数を450Hzから徐々に 大きくすると、次に音が最も大きく聞こえるのは,振動数が エHz のときである。 ただし、開口端補正は音の振動数によらず一定とする。 × 189 気柱の振動■図の太さ一様な管は,ピ ストンBを動かして,管口AからピストンBまで の長さを調節できるようになっている。 音源から振動数の音波を出しながら,Bを動かしてをしにしたらよく共鳴した。 続いてBをゆっくり動かしたら,しがのとき再びよく共鳴した。 開口端補正は無 視する。 (1) 音波の波長を, l を用いて表せ。 (2), 音波の振動数をfから次第に大きくしたら, 振動数がf' のときまた よく共鳴した。 4 人をする f'はfの何倍か。 ■さを,m,s 数は変わら 最大) 1 ヒント 185 2 つの経路の経路差は,引き出した距離の2倍ずつ長くなっていく。 186 弦を長くすると, 基本振動の波長が長くなり、 振動数が小さくなる。 187 (4) 振動数が (3)の結果と等しいことを利用する。 188 (ウ) 空気の密度が時間的に変化しないのは、定在波の腹の位置である。 189(2) 気柱の長さが - 波長の何個分かを考えるとよい。 -182

回答募集中 回答数: 0