学年

教科

質問の種類

物理 高校生

物理のエッセンス熱の問8について、mNaが1モルの分子の質量になるのがなぜなのか分かりません。単位的にもそうなるとは思えなかったのですが、分かった方は教えて下さると有難いですm(_ _)m

かはないはず) ひx2 = by²2=022 よって 72=30x2 ③,④より F=- Nmv² 3L よって P-E-Nmv²_Nmv² 3L3 P= L2 3 V この結果を状態方程式 PV = nRT= -RT と比べてみれば (PV=) Nmv²_N_RT =hty mv²-3. R.T A NA 2 NA 3 定数は平均に関係しないから、 ギーの平均値を表していることになる。 F N NA 気体の内部エネルギー 1/2mv1.2mに等しく,分子の運動エネル M ③ 分子の平均運動エネルギー 1/2mv=12/2 NT=12/2kT 3 R -mv². NA ちょっと一言 この式は重要。 温度は化学では熱い冷たいの目安に過ぎなかった のが、分子の運動エネルギーで決まっていることがこうして分かった んだ。また,分子が運動をやめる T = 0 が最も低い温度となることも 示唆されている。定数R/NA はんと書いてボルツマン定数とよんでい る。 2乗平均速度√vは分子の平均の速さにほとんど等しい。27℃の酸素の √v^² を求めよ。酸素の分子量を 32,気体定数を8J/mol・K とする。 RO-31XY NAJS WEDR 内部エネルギーU とは分子の運動エネルギーの総和をいう。 そこで単原子分子からなる気体(以下,単原子気体とよぶ) では 3 RT=3 NRT="nRT 気体とよぶ)では U=Nx/1/2mv=N×012 NA 2 29 何原子分子であれ気体の内部エネルギーは絶対温度 Tに比例すること わかっている。 内部エネルギーは温度で決まる小

解決済み 回答数: 1
物理 高校生

2枚目の(ウ)に書かれている「転倒し始める時は〜」のところが分かりません。なぜそれが成り立つのでしょうか?

例題1 剛体のつりあい ① 次の文中の 図のように、直方体の一様な物体Aが, 水平と45°の傾斜をもつ地盤Bの上に,質 量の無視できるロープCによって取りつ けられた構造物がある。 物体Aと地盤B とは、接触しているだけである。 をそれぞれ記入せよ。 に適する数値(負でない整数) A 4m 考え方の キホン M145° mg45 2m C B J 水平面 物体Aの質量 : m=1.0×10℃〔kg〕, 重力 加速度の大きさ:g=10[m/s'], 物体Aと地盤Bとの間の静止摩擦係 数および動摩擦係数 : μ=1/3,√2の値: 1.4とし, ロープCは十分強く, 伸び縮みしないものとする。 × 10°Nであり、地 × 10°N である。 (1) 静止しているとき, ロープCの張力は (ア) 盤Bが物体Aに作用する抗力の大きさは (イ)[ (2) 地震によって、 次第に強くなる上下動 (鉛直方向の動き)が起こ り,ある加速度が物体Aにはたらいたら, 物体Aが転倒 (物体Aが 地盤Bに対して,すべり離れなどの動きを起こし、回転して倒れ る状態)を起こし始めた。 その加速度の大きさは (ウ) m/s' であ り、ロープCの張力は (エ)[ |×10°Nである。 (3) 地震によって、 次第に強くなる水平動が起こり,ある加速度が 物体Aにはたらいたら, 物体Aが転倒 ((2)参照) を起こし始めた。 その加速度の大きさは (オ) m/s' であり, ロープCの張力は (カ) × 10°である。 〔東京理科大・改〕 力学において最も重要なことは, 力を正しく見つけることである。 そして力がわかれば,それらを互いに垂直な方向に分解し、力のつ りあいの式を2つつくる。 次に,適当な点のまわりの力のモーメントのつりあい の式をつくる。あとは, 以上の3つの連立方程式を解くだけである。なお, 静止 摩擦力はつねに最大静止摩擦力が働いているとは限らないので, はじめからその 値を IN とおいてはいけない。 まず, 未知数として文字で表し (例えばF),つ りあいの式を解いてFの値を求めてから, FUN の条件を課せばよい。また, 力のモーメントのつりあいの式は、任意の点のまわりのモーメントで考えてよい が、なるべく計算が簡単になるような点を選べばよい。 すなわち, ある力の作用 線上の点を選ぶと, その力のモーメントが0になるので計算が楽である。 1カ学

回答募集中 回答数: 0
物理 高校生

力学的エネルギー保存の法則の問題(写真の赤丸の問題)について質問です。解説の「速さが最大になるときの物体の位置をとする。板を取り去った 
直後とで,力学的エネルギー保存の法則の式を立てる」とは、どう言うことでしょうか。また、「物体の位置がx2のとき、重力による位置エネルギー... 続きを読む

1 3 W₁ 168.弾性体のエネルギー <解答> (1) 解説を参照 (2) mg 1 k 0= mg k (4) x= (1) (2) 物体は重力, 弾性力 垂直抗力を受け、それらの力はつ りあっている。物体の位置がxのときのつりあいの式を立てる。 また, 板が物体からはなれるとき, 垂直抗力が0となる。 (3)物体は重力弾 性力の保存力だけから仕事をされ, その力学的エネルギーは保存される。 ばねの伸びが最大になるとき, 物体の速さは0 となる。(4) 運動エネル ギーをxの関数として式で表し、 速さの最大値を求める。 解説 (1) 物体の位置がxのとき, 弾性力は鉛直 上向きに kx であり, 物体が受ける力は図1のよう に示される。 力のつりあいから、 2mg_ k 1 2 m k 9 mg-kx-N=0 N=mg-kx ...① これから, Nとxとの関係を示すグラフは、図2の ようになる。 (2) 板が物体からはなれるときは, N=0 となる。 (3) -mv-mgx2- 2mg k 図 1 x₁= (4) 速さが最大になるときの物体の位置をxとする。 板を取り去った 直後とで, 力学的エネルギー保存の法則の式を立てると, 2+ +½kx²³² kx mg 図2のグラフから, N = 0 となるxの値は, x= k (3) x=0を重力による位置エネルギーの基準とし, 板を急に取り去っ た直後と, ばねの伸びが最大になったときとで, 力学的エネルギー保 存の法則の式を立てる。 板を急に取り去った直後, 運動エネルギー, 重力および弾性力による位置エネルギーは,いずれも0である。 ばね の伸びが最大になるときの物体の位置をxとすると, その位置での 運動エネルギーは 0, 重力による位置エネルギーはmgx, 弾性力 による位置エネルギーは 1/21 kx² と表される(図3)。これから,力学 的エネルギー保存の法則の式を立てると 図3 200-mgx+1/23kx0=x,(kx,-2mg) x₁=0, 2mg_ k x = 0 は板を取り去った位置なので、 解答に適さない。 したがって, mg て,x2= のとき、1/12mmは最大値 k ▼mg (1) 問題文の 「ゆっく りと下げ・・・」とは,力が つりあったままの状態で 板を下げることを意味す る。 mg_ | mv²=mgx₂= kx²=-=k(x₂ − m ² ) ² + ²q² ... @ 2k 速さが最大となるのは, 式 ② が最大値となるときである。 したがっ m²g² 2k となる。 NA mg 図2 E=0 mg k +½kx² E=0-mgx+ 7 0 ンズ (3) 物体の力学的エネ ルギーは、 運動エネルギ 重力および弾性力に よる位置エネルギーの和 である。 第1章力学Ⅰ 物体の位置がxのと き 重力による位置エネ ルギーはmgxz, 弾性 力による位置エネルギー は kx2²/2 となる。 01/23m²の最大値を求 めるには,式②のように 平方完成をするとよい。 101 some 体に力を加えて いて, この力がする仕事の仕事率を求めよ。 度の大きさをgとする。 (1) 物体と斜面との間に摩擦がない場合 (2) 物体と斜面との間の動摩擦係数がμ' の場合 →例題13 自然の 長さ HALA 168. 弾性体のエネルギー図のように, ばね定数kのばねの 上端を天井に固定し,下端に質量mの物体を取りつける。 ばね が自然の長さとなるように, 板を用いて物体を支える。 ばねが 自然の長さのときの物体の位置を原点として, 鉛直下向きを正 とするx軸をとり,重力加速度の大きさをgとする。 (1) 板をゆっくりと下げ, 物体からはなれるまでの間で,物体 が受ける垂直抗力の大きさNと位置xとの関係をグラフで示せ。 (2) (1)の場合において, 板が物体からはなれるときの物体の位置xを求めよ。 17 (3) 板を急に取り去った場合, ばねの伸びが最大となるときの物体の位置 x を求めよ 物体 板| ばね < (4) (3) の場合において, 物体の速さが最大になるときの物体の位置 x と, そのとき (拓殖大改) 速さ”をそれぞれ求めよ。 [←]自然の長さ ors→Q Ø Ø d d d d d d d d d d d d d d d d d d [知識] 69. 動摩擦力と仕事■ 水平面上の壁にばね定 数んのばねの一端を固定し、 他端に質量mの物 体を取りつけた。 ばねが自然の長さのときの物 日本の位置Oを原点とし、 右向きを正とするx軸 をとる。 物体を原点Oからx軸の正の向きに距離 はなれた位置Pまで引き,静か なすと、物体はx軸の負の向きに向かって動き出し, 0から距離s はなれた位置 8420 (愛知教 停止した。 この運動では,PとQの間のある点で物体の速さが最大となることが観測 た。 物体と面との間の動摩擦係数をμ, 重力加速度の大きさをgとする。 物体が位置Pにあるとき, ばねにたくわえられている弾性エネルギーはいくら 物体が0から距離 x はなれたPとQの間の任意の位置Rにあるとき, 物体の エネルギーはいくらか。 物体が静止する位置Qの座標s はいくらか。 物体の速さが最大となる位置を求めよ。

解決済み 回答数: 1
物理 高校生

力学的エネルギー保存の法則の問題(写真の赤丸の問題)について質問です。解説の「速さが最大になるときの物体の位置をとする。板を取り去った 直後とで,力学的エネルギー保存の法則の式を立てる」とは、どう言うことでしょうか。また、「物体の位置がx2のとき、重力による位置エネルギー... 続きを読む

の長さ h=250 -E 0° ngcos3 0° _mgcos30 30° 168. 弾性体のエネルギー 解答 (1) 解説を参照 (2) (4) x= mg k V= x= mg_ k m k て,x2= g 物体は重力弾性力、垂直抗力を受け、それらの力はつ りあっている。物体の位置がxのときのつりあいの式を立てる。また, 板が物体からはなれるとき,垂直抗力が0となる。(3)物体は重力,弾 性力の保存力だけから仕事をされ,その力学的エネルギーは保存される。 ばねの伸びが最大になるとき, 物体の速さは0 となる。 (4) 運動エネル ギーをxの関数として式で表し, 速さの最大値を求める。 解説 (1) 物体の位置がxのとき, 弾性力は鉛直 上向きにkx であり, 物体が受ける力は図1のよう に示される。 力のつりあいから, mg-kx-N=0 N=mg-kx ...① これから, Nxとの関係を示すグラフは、図2の ようになる。 (2) 板が物体からはなれるときは, N = 0 となる。 (3) mg 図2のグラフから, N = 0 となるxの値は, x= k 2mg k mg のとき, k 図1 Rx N x=0, x = 0 は板を取り去った位置なので、 解答に適さない。 したがって 2mg k mg (3) x=0を重力による位置エネルギーの基準とし, 板を急に取り去っ た直後と, ばねの伸びが最大になったときとで, 力学的エネルギー保 存の法則の式を立てる。 板を急に取り去った直後, 運動エネルギー, 重力および弾性力による位置エネルギーは,いずれも 0である。 ばね の伸びが最大になるときの物体の位置を x1 とすると, その位置での 運動エネルギーは 0, 重力による位置エネルギーはmgx, 弾性力 による位置エネルギーは 1/12 kx² と表される(図3)。これから,力学 図3 的エネルギー保存の法則の式を立てると, 0=0-mgx + 1/23kx120=x(kx-2mg) 1 mv² は最大値 2 (4) 速さが最大になるときの物体の位置を x2 とする。 板を取り去った 直後とで, 力学的エネルギー保存の法則の式を立てると 0=1/2mv-mgx2+1/12kx2² 1/12mmx212/2kx=-12/21(キュー)+².② m²g² mg 2mg_ k 速さが最大となるのは, 式 ② が最大値となるときである。 したがっ m²g² となる。 2k (1) 問題文の 「ゆっく りと下げ・・・」とは,力が つりあったままの状態で 板を下げることを意味す る。 NA mgs 図2 E=0 mg k F000000006 i + 1/2kx ₁² E=0-mgx+- 0 X1 1x (3) 物体の力学的エネ ルギーは, 運動エネルギ 一. 重力および弾性力に よる位置エネルギーの和 である。 第1章 力学Ⅰ 物体の位置がx2のと き, 重力による位置エネ ルギーはmgx2, 弾性 力による位置エネルギー は kx2²/2 となる。 0/1 m² の最大値を求 めるには,式 ② のように 平方完成をするとよい。 101 some きる。 体に力を加えて, 一定の いて,この力がする仕事の仕事率を求めよ。 ただし, 度の大きさをgとする。 (1) 物体と斜面との間に摩擦がない場合 (2) 物体と斜面との間の動摩擦係数がμ' の場合 →例題13 [知識] 69. 動摩擦力と仕事■ 水平面上の壁にばね定 数kのばねの一端を固定し、 他端に質量mの物 168. 弾性体のエネルギー図のように, ばね定数kのばねの 上端を天井に固定し,下端に質量mの物体を取りつける。 ばね が自然の長さとなるように, 板を用いて物体を支える。 ばねが 自然の長さのときの物体の位置を原点として, 鉛直下向きを正 とするx軸をとり,重力加速度の大きさをgとする。 (1) 板をゆっくりと下げ, 物体からはなれるまでの間で,物体 が受ける垂直抗力の大きさNと位置xとの関係をグラフで示せ。 (2) (1)の場合において, 板が物体からはなれるときの物体の位置 x を求めよ。 (4) (3) の場合において, 物体の速さが最大になるときの物体の位置 x と, そのとき (3) 板を急に取り去った場合,ばねの伸びが最大となるときの物体の位置xを求めよ 速さ”をそれぞれ求めよ。 (拓殖大改) 自然の長さ 自然の 長さ 物体 板| Os→0 ばね < 0000 X 体を取りつけた。 ばねが自然の長さのときの物 日本の位置Oを原点とし、 右向きを正とするx軸 をとる。 物体を、原点Oからx軸の正の向きに距離はなれた位置Pまで引き,静か なすと、物体はx軸の負の向きに向かって動き出し, 0から距離s はなれた位置 停止した。 この運動では,PとQの間のある点で物体の速さが最大となることが観測 た。 物体と面との間の動摩擦係数をμ, 重力加速度の大きさをgとする。 物体が位置Pにあるとき, ばねにたくわえられている弾性エネルギーはいくら 物体が0から距離 x はなれたPとQの間の任意の位置Rにあるとき, 物体の エネルギーはいくらか。 物体が静止する位置Qの座標s はいくらか。 物体の速さが最大となる位置を求めよ。 (愛知教育大

解決済み 回答数: 1
物理 高校生

重要問題集85の(3)(4)です。 (3)書いてある言葉の意味は分かります。なぜ1がsinθとルートの間に入ったのかがわからないです。 (4)1行目までしか言ってる意味がわからないです。 受験に物理を使わないので基礎知識がだいぶ欠落しています(>_<) 頑張って理解する... 続きを読む

必解 85. 〈光の屈折〉 図は屈折率の異なる2種類の透 明な媒質1 (屈折率 n) と媒質 2 (屈折率n2) からなる円柱状の二 重構造をした光ファイバーの概念 図であり,中心軸を含む断面内を 光線が進むようすを示している。 中心軸に垂直な左側の端面から入射した光線が、 媒質の境界で全反射をくり返しながら反対 側の端面まで到達する条件を調べてみよう。 空気の屈折率は1としてよく, 媒質中での光損 失はないものとする。 また媒質2の内径および外径は一定であり, 光ファイバーはまっすぐ に置かれているとしてよい。 中心軸 L 媒質2 媒質 1 媒質 2 B (1) 左側の端面への光線の入射角を0とするとき COSα を0と」 を用いて表せ。 (2) 光線が光ファイバー内で全反射をくり返して反対側の端面に到達するための sin0 に対 する条件を 1 2 を用いて表せ。 ただし,0°<0<90°とする。 (3)0° <890°のすべての入射角0に対して境界 AB で全反射を起こさせるための条件を nとn2 を用いて表せ。 (4) 光ファイバーの全長をL, 真空中での光の速さをcとするとき (2)の条件を満 左側の端面から反対側の端面に到達す7 土地 ミ

回答募集中 回答数: 0