学年

教科

質問の種類

物理 高校生

交流発電機の原理 交流発電機が回転し続けるために加える外力の仕事率が抵抗での消費電力と保存するのは何故なのでしょうか? 誘導起電力は仕事はしないのですか?教えてください。

7/1029 7/29 10 交流発電機の原理 電磁誘導の骨格、出題 次の文中の空欄 ①〜13を埋めよ。 ただし①と⑧はイロのどちらかを その他は数式で記入せよ。文中の物理量は MKSA単位系で表す。 }の中から選び、 交流発電機の原理を考えてみよう。 図のように一様な磁界 (磁束密度B) の中に面積Sの 長方形 abcdの一巻きコイルを置き, 磁界に直交する軸のまわりに一定の角速度で回転さ せる。 コイルを貫く磁束のは周期的に変化する。 コイルがabを上にし,その作る面が磁界の 向きに垂直なときに時刻を0とし,かつこのときに磁界が面abcdを貫いている向きを破 束が正となる面の向きとすれば,=)となる。時間⊿tの間における磁束の変化 とするとき、コイルに生じる誘導起電力は, cd a b向きを電流の正の向きと LT, V=1 )/4t=30 であり、コイルの両端 pq に抵抗Rを接続して回路を形成 すると,図の状態で電流は (イ)ab, (ロb→a} の方向に流れる。 コイルの抵抗が無視でき るとすると、このときの電流I )であり,抵抗で消費される電力Pは,P ) となる。 次に回路を流れる電流が磁界から受ける力とコイルの回転に要する仕事を考えよう。 図の ように磁界の向きを方向, 磁界とコイルの回転軸に垂直な方向を方向, 座標原点を回転 軸にとる。 図の状態で,コイルの一部ab (長さ)が磁界から受ける力の大きさは電流Iを用 いて (ロ)下向き}となる。一方,図のコ であり,その方向は方向を{(イ)上向き, イルの回転からaまでの長さをとし, コイルの一部abの位置をx-y座標で表すと (土,日)=(8), }, またその速度は(フェ, by) = (),( たがってコイルの一部 ab が磁界から受ける力にさからって等速回転するために必要な仕事 )} となる。 し は単位時間あたりP=)となる。コイルの一部cdについても上と同様の議論がで またad, bcで受ける力はのまわりの回転運動を生じさせない。したがってコイル全 体で必要な仕事は単位時間あたり 2P' となり, 式を整理すれば電力Pと一致することがわか る。 N 4 d T a R B b B ◎電磁誘導 B ◎電磁誘導 亜(t) 閉曲線 IV ↓ C ~ ・回路程式 の向きを設定 I -(右手系) → の学 Vem (~ファラデー・ノイマンの法則) PR(t) = Pex(t) エネルギー保存 -46-

回答募集中 回答数: 0
物理 高校生

ローレンツ力の分野です。(3)の解説の説明の交流電圧の角周波数が円運動の角速度と等しくなっていれば〰︎とあるのですがなぜそうなるのかわからないです。教えて頂きたいです。よろしくお願い致します。

【3】 正の電気をもつ質量の荷電粒子を加速する ことを考える。いま、半径 R,厚さの中空で半円 形の電極 AとBを図のように距離だけ離し、平面 上に置いた。ただし、厚さと距離はいずれも半 径Rより十分小さいものとする。2つの電極には図 の真上から見た図に対して紙面を裏から表に貫く方 向に磁束密度の大きさ B の一様な磁場がかかって いる。2つの電極ではさまれた領域 (Cとする) には 磁場はないものとする。電極AとBの間には交流 電圧V(f)=Vcos.ℓ,f が加わっており,t=0のと 真上から見た図) C A B P Be Bo /装置の\ 断面 CB 8E き、電極Aが高電位とする。 また領域Cの電場は一様とみなせるとしよう。 ABU Q FK この装置によって荷電粒子が加速されるようすは次のとおりである。 時刻 f=0 に電極 Aの右端の点Pに荷電粒子を置くと電圧V によって加速され、 電極 B に入る。荷電粒 子が2つの電極間の距離を移動する時間は十分短く、その間電圧は一定とみなせるもの とする。電極 Bに入った荷電粒子はローレンツ力を受けて円運動を行い,領域Cに達す るが、電極内の移動時間は領域を通過する時間に比べて十分長い。したがって、この 間に交流電圧の位相が180°変化していれば荷電粒子は再び電圧V によって加速され、 電 極Aに入って円運動を行い、領域Cに達する。 このように電極 A, B内で円運動した荷 電粒子は領域Cを通過するたびに加速をくり返す。以上を考慮して次の問いに答えよ。 (1) 時刻 f=0 電極 A の右端の点P に置かれた初速度の荷電粒子が電極 B に入ると きの速度を求めよ。 (2) 電極 Bに入った荷電粒子が行う円運動と円運動の向き(時計回り、反時計 回り)を答えよ。 (3)(2)の荷電粒子が電極 B内を通過する時間および領域Cに到達した荷電粒子を再 Vで加速するために必要な交流電圧の角周波数」をそれぞれ求めよ。 (4)(3)の荷電粒子が領域Cを通過して電極Aに入るときの速度 #27 電極 A内での円運 動の半径 および電極A内を通過する時間をそれぞれ で表せ。 (5)ここまでの考察により, 荷電粒子は領域Cを通過するたびに電圧Vでどんどん加速 されるが,加速に伴って電極 A, B内での円運動の半径がどんどん増大してしまい 荷電粒子が到達できる速度の上限が電極の大きさに依存してしまう。そこで,荷電粒子 の円運動の半径を保ったまま加速するには磁束密度の大きさと交流電圧の位相をどのよ うに制御すればよいか、答えよ。

回答募集中 回答数: 0
物理 高校生

(2)の右ねじの法則の考え方がわからないです。教えて頂きたいです。よろしくお願いします。

120.〈直線電流と円形電流がつくる磁場〉 図1に示すように、互いに直交するx軸, y 軸, z軸をとる。 z軸に平行で無限に長い導線 1と導線2を考える。導線1は原点O(0, 0, 0)を通り, 導線2は点Q(2d, 0, 0) を通る。 導 線1には直線電流Iがz軸の正の向きに、導線2には直線電流Iがz軸の負の向きに流れ ている。ただし,電流の大きさは L<I とする。 導線の周囲の物質の透磁率をμとして, 次の問いに答えよ。 向きについての解答は, 「z軸の正の向き」のように、軸の名称と正負で 答えよ。 (1) 導線1の長さの部分が導線2のつくる磁場から受ける力の大きさFを, I, Iz, μ, d, を用いて表せ。 またその向きを答えよ。 (2)P(d, 0, 0) での磁場の強さを, I, I2, μ, dの中から必要なものを用いて表せ。 ま たその向きを答えよ。 次に図2に示すように, 点R (4d, 0, 0) を中心に半径dの円形コイルを xz 平面内に置き, dos それに電流を流す。 (3)点Rでの磁場の強さが0になったとする。 このときの円形コイルに流れる電流の大きさ Iを, I と Iを用いて表せ。 また, 点S(5d, 0, 0)での電流Iの流れる向きを答えよ。 導線1 導線2 導線1 導線2 11 12 I PQ I2 Q R S 2d 4d 5dx d 2d x 図2

回答募集中 回答数: 0