学年

教科

質問の種類

物理 高校生

問2の(イ)解答にある「4/3波長分」の意味がわかりません。

73. 気柱の共鳴 5分 気柱の共鳴と音の速さについて考える。 問1 次の文章中の空欄アに入れる式として正しいものを 下の①~⑥のうちから1つ選べ。 気柱の長さ スピーカー ピストン 実験室内に,図のような一端がピストンで閉じられ、気柱の長 さが自由に変えられる管がある。 管の開口部でスピーカーから振 動数fの音を出し,ピストンを開口端から徐々に動かして,最初に共鳴が起こるときの長さを測定す であった。 さらにピストンを動かし,次に共鳴する長さを測定したところL』であった。これ より音の速さはアと求められる。 ただし, 開口端補正は無視できるものとする。 ① fL2 ② 2fL2 ③f(L2-L ④ 2f (L-Li) ⑤f(L₂-L) ⑥f(L₂-L₁) L₁ L2 Li L2 問2 次の文章中の空欄イウに入れる語句として最も適当なものを, それぞれの直後の { }で囲んだ選択肢のうちから1つずつ選べ。 (02.0- OS) Snia O.E 気柱の長さをL に保ったまま, 共鳴が起こらなくなるまで実験室の気温を徐々に下げた。 共鳴が 起こらなくなったのは, 管内の空気の温度が下がったため, 0 0 03.0mol ① 音の波長が長くなった 401 管内のイ ② 音の波長が短くなった 0 ③音の振動数が大きくなった からである。 ① ④ 音の振動数が小さくなった ⑤ 音が縦波から横波になった このあと, ピストンの位置を左に動かしていったところ、 管の開口端に達するまでに ① 1回 E ②2回 共鳴はウ 起こった。 ③ 3 回 ④ 0 回 10. [2021 追試〕

回答募集中 回答数: 0
物理 高校生

202の(3)を教えてください。(2)と同じになると思いました。

こり、 という. 分子内部での電子 より電荷のかた この現象を利用している.また, (3) )のかたよりによってお 200 (クーロンの法則) 次の問いに答えよ. クーロンの法則の比例定数はk=9.0×10N・m²/C2 とする. (1) 2つの点電荷g1 = 3.0×10 C, g2=6.0×10 Cを3.0m離しておくときの静電気力の大きさ は何N か. 20×10-12 12×1.3×101 1.8×10-2N (2) 2つの点電荷g1 = 3.0×10 C, g2=6.0×10 Cの間に0.20Nの力がはたらいた. 点電荷 間の距離は何か。 =9.0×109.3.0×106×6.0×10%= 390x 10'm 3点電荷71=3.0×10 °Cと点電荷g2 を 1.0m離しておいたら270-Nの力がはたらい た点電荷Q2の電気量は何Cか. 9.0×104×3.6×106Q2=27×10-3 H Q2 28×6-3 9.5×10°×3×107 練習問題 A 201(クーロンの法則)+3.0×10 C, -1.0×10-Cの電荷をもつ同じ大きさの2つの小さな 金属球が0.30m離れた位置におかれている。 クーロンの法則の比例定数を9.0×10°N・m²/C2 とする. (1) 2球が互いに及ぼしあう力の大きさは何Nか、またそれは引力か斥力か. 次に2球をいったん接触させた後,再び 0.30m離した. (2) 各球のもつ電荷はそれぞれ何Cか. (3)このとき、2球が互いに及ぼしあう力の大きさは何Nか.またそれは引力か斥力か. 202. (静電誘導と誘電分極) 材質と大きさが同じで、電荷をもっていない2つの金属球A,Bに 帯電体Cを近づけて, 図のように次の順に操作をするとき, 金属球の表面に現れる電荷の分布を 図に示せ. C A B (1) 接触しているA,BのAに負の帯電体Cを近づける. (2) Cを近づけたまま, AとBを少し離す. (3)(2)の状態から Cを十分遠くに離す. B (2) (4)(3)の状態から, A, B を十分遠くに離す. A B A,Bを不導体(誘電体)でできた球D,Eにかえて, (3) 上の(1)~(3)と同じ操作を行う. B (5) (3)のとき,D,Eの表面に現れる電荷はどうなるか. (4) 文章で答えよ.

回答募集中 回答数: 0
物理 高校生

熱についてです (1)と(2)の解き方を詳しく教えていただきたいです また、(1)の400×4.2+120は温度である20も入れて400×4.2×20+120にならない理由もあわせて教えていただきたいです  よろしくお願いします

発展例題11 氷の比熱 質量400gの氷を熱容量 120J/Kの容器に入れ, 容器に組みこんだヒーターで熱すると、 全体の温度 は図のように変化した。 熱は一定の割合で供給され すべて容器と容器内の物質が吸収したとし, 水や氷 の水蒸気への変化は無視できるものとする。 また, 水の比熱を4.2J/ (g・K) とする。 (1) ヒーターが供給する熱量は毎秒何Jか。 (2) 氷1g を融解させるのに必要な熱量は何か。 指針 (1) 254s以降の区間では,氷はす べて水に変化している。 水と容器の温度上昇に 必要な熱量から、ヒーターが毎秒供給する熱量 を求める。 (2)温度が一定の区間 (32~254s) では,供給さ れた熱量はすべて氷の融解に使われる。 これか ら、氷1gの融解に必要な熱量を求める。 (3) 氷と容器の温度が上昇する区間 (0~32s)で, 温度上昇に必要な熱量から、 氷の比熱を求める。 【解説 (1) 水と容器をあわせた熱容量は, 400×4.2+120=1.8×10°J/K 254~314sの間に供給された熱量で,水と容器 の温度が0℃から20℃まで上昇するので, ヒー ターが毎秒供給する熱量を Q[J] とすると, 20 0 -20 ●温度(℃) →発展問題 177 /32 254 314 時間 (s) (3) 氷の比熱は何J/ (g・K) か。 (1.8×10)×(20−0)=Qx (314-254) Q=6.0×102J (2)32~254sの間に氷はすべて融解した。 氷1g を融解させるのに必要な熱量をx 〔J] とすると, 400×x=(6.0×10^)×(254-32) x=3.33×102J 3.3×103J (3) 氷の比熱をc [J/ (g・K)〕 とすると, 氷と容器 をあわせた熱容量は, 400×c+120[J/K] 0~32sの間に供給された熱量で、氷と容器の 温度が20℃から0℃まで上昇するので, (400×c+120) x{0-(-20)} =(6.0×102) x (320) c=2.1J/ (g・K) ※展問題

回答募集中 回答数: 0