学年

教科

質問の種類

物理 高校生

この問題の問6と7が解き方が分かりません 解説をお願いしたいです

J 8 非等速円運動 【標準30分・28点】 長さの糸の端に質量mの小球をつけ、図に示すように、もう一方の端0を中心 にして鉛直面内で振り回し、円運動させる。重力加速度をの糸の張力をTとして 以下の問いに答えよ。なお、回転中の糸の長さは一定 (1) とみなし よび空気の抵抗は無視できるものとする。 外 問6 次に れた。 小 はいく 小球の大きさお のをつ るもの 問7 ま 糸が O Acts (m) 1.9 0 T P A Vo mg 図2 問1 小球が最下点にあるときを基準にして,糸が鉛直方向から角0だけ傾いたとき (P点) の小球の位置のエネルギーをm, g, 1, 0 を用いて表せ。 問2 小球が最下点にあるときの速さを” として, P点における小球の速さ”を、エ ネルギー保存則より求め, g, vo, 1, 0 を用いて表せ。 問3 P点における半径方向 (PO方向) の運動方程式を, T, m, l,g,v, 0 を用い て表せ。 てせ 問4 上の関係により,糸の張力Tをm,I,g,vo を用いて0の関数として表し,横 軸に 0,縦軸にTをとって, 0≧≦2の範囲におけるTの変化の概略を図示せよ。 ただし,小球は回転円運動を続けるものとする。 問5 小球が回転円運動を続けるには,最下点における速さ”はいくら以上でなけれ ばならないか。 1g を用いて表せ。

回答募集中 回答数: 0
物理 高校生

物理基礎の力のつり合いの問題です。基本例題8で、ボールに働く力についてで、いくつか質問があります。 ①Fはバネを右に引いた力と同じですか? ②ボールを右に引く力が働いたら、その反作用でボールが左にバネを引く力がないのはなぜですか? 作用反作用がいつ働くのかがいまいちわかって... 続きを読む

例題 解説動画 基本例題8 力のつりあい 基本問題 58,596465666768 軽い糸の一端を天井につけ、 他端に重さ 2.0Nの小球 をつなぐ。この小球に, ばね定数10N/m の軽いばねの 一端を取りつけ,他端を水平方向に静かに引いた。 糸が 鉛直方向と60°の角をなして小球が静止しているとき 力の ばねの自然の長さからの伸びは何mか。 C 2.0N 10N/m 60° 00000 指針 小球は、重力, ばねの弾性力, 糸の 張力を受けて静止しており,それらはつりあって いる。 ばねの弾性力をF[N], 糸の張力をT〔N〕 と すると, 小球が受ける力は図のように示される。 力を水平方向と鉛直方向に分解し, 各方向におけ る力のつりあいの式を立てる。 これからFを求め, フックの法則を利用してばねの伸びを求める。 水平方向:F- T=0 2 鉛直方向: T 2 --2.0=0…② | 解説 水平方向, 鉛直方向のそれぞれの力 のつりあいから, √3 T[N] √ T(N) 30° 720 [N] 式 ②から,T= 4.0Nとなり,これを式①に代入し てFを求めると, F=2.0√3N ばねの伸びを x[m] とすると, フックの法則 「F=kx」 から, F 2.0√3 x= 2.0×1.73 10 10 -=0.346m 0.5m Point F〔N〕 小球にはたらく3つの力がつりあって いるとき,水平方向と鉛直方向のそれぞれの成 分もつりあっている。 V2.0N 基本例題 9 ばねと作用・反作用 同じばね定数の2つの軽いばね A, B を用意する。 ばね Aの一端を壁に取りつけ, 他端におもりをつるして静止さ せる。一方, ばねBは,その両端にそ して静止 基本問題 71, 72,73 LA 0000000000 [知識] 57. 重さと質量 基本 地球上の重力加速度の大き 大きさを地球上の1であるとして、次の各 (1)地球上での重さが294Nの物体の質量に (1)の物体が月面上にあるとき,その質 (3)(1)の物体が月面上にあるとき,その重 [知識 58. 糸の張力 図のように, 質量 1.0kg のお て静止させた。 このとき, おもりが受ける ただし, 重力加速度の大きさを9.8m/s2 と [知識 59. ばねの弾性力 自然の長さ 0.200mの軽 さが 0.240mになった。 重力加速度の大きさ (1) ばねのばね定数を求めよ。 (2) ばねに質量 5.0kgの物体をつるすと, ヒント ばねの弾性力の大きさは, ばねの伸びに上 思考 60. ばねのつりあい 表は,軽いばねにさ おもりをつるし、ばねの自然の長さからの ものである。重力加速度の大きさを9.8m/s 各問に答えよ。 (1)自然の長さからのばねの伸びx[m]を 弾性力 F〔N〕を縦軸にとったグラフを描い (2)

回答募集中 回答数: 0
物理 高校生

物理基礎 2物体の運動について。 写真の問題の(3)は滑車には張力Sと2つの張力Tがはたらいているとありますが、なぜ2つの張力があるのか分かりません。作用・反作用だと思うのですが、感覚的には理解出来ません。 また、(4)解答の「v=atより」からの計算の途中式が省かれ... 続きを読む

注(1)と これは全体ひとまとめの運動 が,力fは求められない。 8/26 基本例題 16 2物体の運動 -77 解説動画 定滑車に糸をかけ,その両端に質量Mとmの物体A, B をつる す。Bは地上に,Aは高さんの所にある。 糸や滑車の質量を無視 し,M>m,重力加速度の大きさをg とする。 物体Aを静かには なして降下させるとき, 次の各量を求めよ。 (1)Aの加速度の大きさα (2)Aをつるしている糸1の張力の大きさT 糸 2 糸 1 M h B (3) 滑車をつるしている糸2の張力の大きさ S m (4)Aが地面に達するまでの時間 t と,そのときのAの速さ” 指針 A,Bは1本の糸でつながれているので,加速度の大きさαも糸の張力Tも等しい。各物 体ごとに,はたらく力の合力を求め、進行方向を正としてそれぞれ運動方程式を立てる。 解答 (1),(2) A,B にはたらく力は右図となるので,運動方程式は A: Ma=Mg-T B:ma=T-mg これより, α, Tを求めると a=. M-m M+m³ 2Mm -g T=- -g M+m (3)滑車には張力Sと2つの張力Tがはたらいて, つりあうので 4Mm S=2T= -g M+ma (4) Aが地面に達するまでに, Aはん進む。 h = 1/12a12 より=1 =1/24より v=at より v= 2h 2(M+m)h va = (M-m)g M-m 「2(M+m)h 2(M-m)gh M+m 9√(M-m)g = M+m TAT TA a Mg B mg →

回答募集中 回答数: 0
物理 高校生

海底の勾配ってなんですか? 各川の堆積作用は何で決まってるんですか?

7 三角州の分類 Link [ちょう し 鳥趾状三角州 p.38 三角州, p.202 自然条件とかかわりの深い集落立地, p.264 ミシシッピ川の河口に広がる三角州(デルタ) えんご 円弧状三角州 海岸の波や流れに対する河川 の堆積作用の相対的な強さ [海底の勾配 カスプ状三角州 0 準平原 構造平野 堆積 沖積平野 (谷区平野、扉 ・洪積台 角海 ミシシッピ加 © TRIC ③ミシシッピ川河口 (アメリカ合衆国) 河川 の堆積作用がさかんで沿岸流が弱い場合は, 河道 に沿って形成される自然堤防が海側にまでのび 鳥の足跡のような形の鳥趾状三角州になる。 ←6鳥趾状三角州 例: ミシシッピ川 (ア メリカ合衆国),キュ ル川 (アゼルバイジャ ン), マッケンジー川 (カナダ) カイロ ©TRIC/NASA ↑ 4 ナイル川河口 (エジプト) 河道の移動がひ んぱんに生じる河川で, 土砂の堆積が進み, 複数 の自然堤防の間が埋積されて陸地化すると, 海岸 線が円弧状になった円弧状三角州になる。 ←7円弧状三角州 例: ナイル川 (エジプ ト), ニジェール川 (ナ イジェリア), ドナウ 川 (ルーマニア), イン ダス川 (パキスタン), おびつがわ 小櫃川(千葉県) Link 別冊ワーク.10 5 ⑤テヴェレ川河口 (イタリア) 波の侵食作用 が強い場合は, 堆積作用がさかんな本流の河口 近だけに三角州が突出し、 その両側は陸側に湾 して尖状になったカスプ状三角州になる。 せんじょう PICOECKE ところにある段丘ほ 土地の隆起や河川流 ←8カスプ状三角州 例:テヴェレ川(イタ リア) 安倍川(静岡 てんりゅう 県) 天竜川 (静岡県) 9 台地の 12台地の利用

回答募集中 回答数: 0
物理 高校生

Wacって 緑で合ってますか?

の公式より、T=2 m √ ka • TB =1倍 T=√2k-1 10% TA VRD =2 となる。 ka 7B とすると, ばね振り子の周期 T=221 2m である。以上より, の答 2 電体は正者 西原休日は漁電西なので、いずれも 4C につくる電場の向きはAからBの向きである。AとBの電気 量の大きさQが等しく, AOBOの距離もRで等しい。 した って, AとBがそれぞれ点0につくる電場の強さ Ex, Eaは 等しく, 点電荷による電場の公式より,Ex=E kQ R2 となる。 以上より, AとBが点0につくる電場は,それぞれの電場を合 成して, AからBの向きへ強さ 2kQとなる。 R2 ばね振り子の周 T-2 また,一様な電場から A には左向きに, B には右向きに静電気 力がはたらくことになる。 よって, 一様な電場をかけた直後、リ ングは反時計回りに回転しはじめた。 +Q 一様な電場から 受ける静電気力 +Q リング A 回転をはじめる方向 T: ばね定 質量 点電荷によ 電気量 いる点の電 E=k R: 電場の 遠ざかる く向き。 EA EB 一様な電場 B. B Q -Q 一様な電場から 6 受ける静電気力 2の答 ① 3の答③ 問3 過程1から過程3の状態変化を圧力と体積の関係を表すグラ フに書き換えると,次図のようになる。 状態AとBは同じ温度 なので,それらの温度で決まる等温曲線上にあり,状態CとD も同じ温度なので、それらの温度で決まる等温曲線上にある。 こ こで,圧力と体積の関係を表すグラフの面積は,気体が外部にし た仕事の大きさを表す。 したがって, 気体が外部にする仕事の大 小関係は,グラフの面積を比較すればよい。 次図より,それぞれ の過程で気体が外部にする仕事の大小関係は, Wac<WAB<WAD - 103 -

回答募集中 回答数: 0