学年

教科

質問の種類

物理 高校生

電流がX→Yに流れる、というのはどこから判断できるんですか?

出題パターン 磁束を切る導体棒 鉛直上向きに、磁束密度B(Wb/m²= N/(A・m)) の一様な磁界がある。 磁界と (rad) の角をなす斜面上に、2本の長い 直線導体 aa bb' が平行に間隔 [m)だ け離れて置かれている。 長さ(m) 質量 (kg)、抵抗値R (Ω)の金属棒の両端X, So Yが、それぞれ導体 aa, bb'に接し、導体と常に直角を保ちながら、なめ らかに動くものとする。また、導体の上端部a. bにはスイッチ S. Sa 抵抗値'(Q)の抵抗がつながれている。重力加速度の大きさを g(m/s) とする。 (I) はじめに S を閉じた。電源の電圧をF(V)にして、金属棒を支える 手を静かに放したところ、 金属棒は動かなかった。 (1)金属棒が磁界から受ける力の大きさ(N) をFを含む式で表せ。 (2) 金属棒に働く力のつりあいの条件によりgを含む式で表せ。 ま たから見てbの電位は高いか低いか。 (Ⅱ) 次に, S, を開き、 S を閉じて十分時間がたったところ、 金属棒は速 さu (m/s)の等速運動をした。 (3)回路に生じる誘導起電力の大きさ(V) を を含む式で表せ。 また 金属棒を流れる電流の向きはXY, Y→Xのいずれか。 (4)をg を含む式で表せ。 (5) 等速運動をする金属棒に対し、重力のする仕事率P (W) はいくらか。 (6) このとき、回路全体の抵抗で1秒間に発生するジュール熱Q(J)はい くらか。

解決済み 回答数: 1
物理 高校生

RT0はP0V0と書いても丸になりますか?

24 0 ふる あ 発展例題28 Vグラフと熱効率 単原子分子からなる理想気体1mol をシリンダー内に密 閉し、図のように,圧力と体積VをA→B→C→D→Aの2 順に変化させた。 Aの絶対温度を To, 気体定数をRとする。 (1)この過程で気体がした仕事の和W'はいくらか。 発展問題 328 BC Do A D (2) AB, およびB→Cの過程で,気体が吸収した熱はそ 0 Vo 2V V 0 れぞれいくらか。 (3)この過程を熱機関とみなし, 有効数字を2桁として熱効率を求めよ。 指針 気体が外部と仕事のやりとりをする 過程は,体積に増減が生じたときであり,B→C, D→Aである。 なお,熱効率は,高温熱源から得 た熱に対する仕事の割合である。 Q1 は,定積モル比熱 「Cv=3R/2」 を用いて Q=nCvAT=1×122×(2T-T)=22RT 3 V B→Cは定圧変化である。 気体が吸収した熱量 TA 解説 (1) DAでは, 気体がする仕事 は負になるので, 整理 W'=2po (2Vo-Vo-po (2Vo-Vo)=poVo (2) B, C, D の温度 TB, Tc, TD は,Aとそれ ぞれボイル・シャルルの法則の式を立てると, povo 2po Vo po Vo 2po.2 Vo = To TB To Tc DoVo To Po.2Vo TD TB=2To, Tc=4To, Tp=2To A→Bは定積変化である。 気体が吸収した熱量 Q2は,定圧モル比熱 「Cp=5R/2」 を用いて Q₂=nC₂4T=1׳R×(4T,−2T₁)=5RT, (3)TcTp, T, Ta から, C→D, D→Aで はいずれも熱を放出している。 したがって, W povo Q1 + Q2 (3RT/2)+5RT 熱効率e は, e= Aにおける気体の状態方程式poV=RT から, e= po Vo 13RT/2 DoVo 13po Vo/2 = 2 13 = 0.153 0.15 327 明照

解決済み 回答数: 1