学年

教科

質問の種類

物理 高校生

オレンジ並み線の部分です 10t=2分の1×0.50t2乗ではダメですか?

知識 16 応用例題1等加速度直線運動と相対速度 止まっていた自動車Aが一定の加速度で走り始めた。Aが走り始めた瞬間に,Aの 横を10m/sの一定の速さでAが動く向きに走ってきた自動車Bが追い越していった。 Aは走り始めてから 100m 走ったところでBと同じ速度になった。 Aの加速度の大きさはいくらか。 (2)AがBに追いつくまでの走行距離を求めよ。 (3)AがBに追いついたとき,Aから見たBの相対速度を求めよ。 ! センサーフ 時刻 t = 0 に位置x=0を 同時に通過 (出発) したもの として考える。 解説 自動車 A が走る向きをx軸の正の向きとする。 v=0 加速度 α a →10m/s -100 m- 10m/s を であ (1) 23 (3) 知識 17 上泉 上昇1234 →UA グラフ (1) (2) (3) →10m/s グラフ (4) v[m/s] 自動車A- 自動車B 10 DOD B -x (m]- 知識 (1)Aの加速度をα[m/s] とすると,ぴ-v=2axより, 10°-02=2a×100 ゆえに,a= 0.50m/s2 (2)A が発進してから自動車Bに追いつくまでの距離を x[m], かかった時間を [[s] とすると, 1 2 A について, x=vot+=aťより,x=0+≒×0.50t…① Bについて, x=vtより, x=10t 0+1/2×0.50 [発展] 18 船 (1) (2) …② t[s] 式 ①,②よりを消去すると, x= 速度が同じ ると、よ=1/2x0.50×(赤)~ IC 知 グラフ 1 になる時刻 AがBに追い つく時刻 x(x-400)=0 ゆえに、x=400m (x=0は不適) 物 三角形と長方形の面積が等しく なる時刻にAがBに追いつく (3)追いついたときのAの速度をva [m/s] とすると, v=2ax より vA-02=2×0.50×400 ゆえに,ひA=√2×0.50×400=20m/s Aから見たBの相対速度を v^B [m/s] とすると, VAB=UB-VAより, VAB=10-20=-10m/s よって,進む向きと逆向きに10m/s (1 (2

解決済み 回答数: 1
物理 高校生

黄色マーカーのところなんで-gなのですか?

x 解説動画 発展問題 48, 52 発展例題5 斜面への斜方投射 物理 Vo 図のように、傾斜角 0 の斜面上の点0 から, 斜面と垂直な 向きに小球を初速 で投げ出したところ, 小球は斜面上の 点Pに落下した。重力加速度の大きさをg として,次の各問 答え 0 OP (1) 小球を投げ出してから、斜面から最もはなれるまでの時間を求めよ。 (2) OP 間の距離を求めよ。 思考 44.2 球 達した た。 こ 小球日 t=0, とし 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 1 0=vot₂-9 coso.tz² (1) (2) (4) 0=t Vo 解説 200 (1) 斜面に平行な方向 にx軸, 垂直な方向に y軸をとる(図)。重力 加速度のx成分,y成 分は,それぞれ次のよ うに表される。 20から, t2= gcoso gsino 45. -gcose, g ら, OP間の距離 xは, P x= x方向の運動に着目すると, x= -gsinO・2 か -129sin0-13-12 gsing-(20)* げ gcoso x成分: gsin y 成分:-gcosd 方向の運動に着目する。 小球が斜面から最も はなれるとき,方向の速度成分 vy が 0 となる。 求める時間をとすると, vy=vo-gcoso・t の式から, Point 2vtan0 gcose m ( 方向の等加速度直線運動は, 折り返 し地点の前後で対称である。 y=0から方向 の最高点に達するまでの時間と,最高点から再 びy=0に達するまでの時間は等しく, (D) 4 0=vo-gcoso・t t₁ = Vo gcoso (2) Py=0の点であり, 落下するまでの時間 t2=2tとしてtを求めることもできる。 を友として,「y=vot-1/12gcost・12」の式から、 発展問題 [知識] A 43. 投げ上げと自由落下 図のように,高さ19.6mのビルの 屋上から 小球Aを真上に速さ14.7m/s で投げ上げた。 小球 Aは,投げ上げた地点を通過して地面に達した。 重力加速度の 大きさを 9.8m/s2 として, 次の各問に答えよ。 14.7m/s A B (1) 小球Aが地面に達するのは,投げ上げてから何s後か。 19.6m

回答募集中 回答数: 0