学年

教科

質問の種類

物理 高校生

重要問題集 物理 71 問題を解く上では必要がないのかもしれませんが、どうしても初期状態でのピストンにかかる力のつり合いが気になります。 自分で立てた式では、 P0S=M0g+P0S となってしまい、M0が0になってしまいます。 そもそも大気圧がかかる面積... 続きを読む

(火) 54 ⑨ 気体分子の運動と状態変化 必解 71. 〈気体の状態変化と熱効率〉 熱機関を利用して上昇, 下降するエレベータの 物体 M [kg] 熱効率を求めよう。 図1のように大気中で鉛直にピストン Mo[kg]- 立てられている底面積 S〔m²〕 の円柱形のシリン ダーに質量 Mo [kg] のなめらかに動くピストンが ついており,中に単原子分子理想気体が封じこめ られている。 図1のようにピストンの可動範囲は ho 〔m〕 からん 〔m〕 までである。 重力加速度の大き さを g[m/s] とする。 初期状態は,気体の温度が外部の温度と同じ h[m] ho〔m〕 初期状態単原子分子 状態 2 理想気体 図 1 To [K], 気体の圧力が大気圧と同じPo [Pa〕, ピストンの高さがん 〔m〕 である。 まずビ ストンの上に質量 M [kg] の物体を乗せ、シリンダー内の気体に熱を与える。 しばらく静止 し続けた後, ピストンが動きだした。 この動きだしたときの状態を状態1とよぶ。 さらに熱し続けるとゆっくりとピストンは上昇し, 高さがん 〔m〕 に達した。 このときの状 態を状態2とよぶ。 状態2になった瞬間に物体をピストンから降ろすとともに熱を与えるの をやめた。ピストンはしばらく静止し続けたが,やがてゆっくりと下降し, 高さがん [m] となったところで静止した。 さらに時間がたつとシリンダー内の気体の温度がT [K] にな ったところで初期状態にもどり,この熱機関はサイクルをなす。 (1)状態1のシリンダー内の気体の温度を求めよ。 (2) 初期状態から状態までに気体に与えられた熱量を求めよ。 [Pa] (3)状態2のシリンダー内の気体の温度を求めよ。 (4)状態1から状態2までに気体に与えられた熱量を求めよ。 (5) 気体の体積をVとするとき,このサイクルのか-V図を図2にかけ。 (6)このサイクルで熱機関が外にした仕事を求めよ。 (7) このサイクルの熱効率を求めよ。 図2 V[m³] (8)M=2Mo, Mo- PoS g h=2h の場合の熱効率の値を求めよ。 [12 弘前大〕 B 応用問題 ◇72. 〈半透膜で仕切られた2種類の気体〉 思考) 図1のようにピストンのついた 2 領域 1

未解決 回答数: 0
物理 高校生

ローレンツ力の分野です。(3)の解説の説明の交流電圧の角周波数が円運動の角速度と等しくなっていれば〰︎とあるのですがなぜそうなるのかわからないです。教えて頂きたいです。よろしくお願い致します。

【3】 正の電気をもつ質量の荷電粒子を加速する ことを考える。いま、半径 R,厚さの中空で半円 形の電極 AとBを図のように距離だけ離し、平面 上に置いた。ただし、厚さと距離はいずれも半 径Rより十分小さいものとする。2つの電極には図 の真上から見た図に対して紙面を裏から表に貫く方 向に磁束密度の大きさ B の一様な磁場がかかって いる。2つの電極ではさまれた領域 (Cとする) には 磁場はないものとする。電極AとBの間には交流 電圧V(f)=Vcos.ℓ,f が加わっており,t=0のと 真上から見た図) C A B P Be Bo /装置の\ 断面 CB 8E き、電極Aが高電位とする。 また領域Cの電場は一様とみなせるとしよう。 ABU Q FK この装置によって荷電粒子が加速されるようすは次のとおりである。 時刻 f=0 に電極 Aの右端の点Pに荷電粒子を置くと電圧V によって加速され、 電極 B に入る。荷電粒 子が2つの電極間の距離を移動する時間は十分短く、その間電圧は一定とみなせるもの とする。電極 Bに入った荷電粒子はローレンツ力を受けて円運動を行い,領域Cに達す るが、電極内の移動時間は領域を通過する時間に比べて十分長い。したがって、この 間に交流電圧の位相が180°変化していれば荷電粒子は再び電圧V によって加速され、 電 極Aに入って円運動を行い、領域Cに達する。 このように電極 A, B内で円運動した荷 電粒子は領域Cを通過するたびに加速をくり返す。以上を考慮して次の問いに答えよ。 (1) 時刻 f=0 電極 A の右端の点P に置かれた初速度の荷電粒子が電極 B に入ると きの速度を求めよ。 (2) 電極 Bに入った荷電粒子が行う円運動と円運動の向き(時計回り、反時計 回り)を答えよ。 (3)(2)の荷電粒子が電極 B内を通過する時間および領域Cに到達した荷電粒子を再 Vで加速するために必要な交流電圧の角周波数」をそれぞれ求めよ。 (4)(3)の荷電粒子が領域Cを通過して電極Aに入るときの速度 #27 電極 A内での円運 動の半径 および電極A内を通過する時間をそれぞれ で表せ。 (5)ここまでの考察により, 荷電粒子は領域Cを通過するたびに電圧Vでどんどん加速 されるが,加速に伴って電極 A, B内での円運動の半径がどんどん増大してしまい 荷電粒子が到達できる速度の上限が電極の大きさに依存してしまう。そこで,荷電粒子 の円運動の半径を保ったまま加速するには磁束密度の大きさと交流電圧の位相をどのよ うに制御すればよいか、答えよ。

回答募集中 回答数: 0
物理 高校生

(3)がわからないです。なぜ(ア)が答えになるのでしょうか...?(1)の誘導がない場合でも導けるように考え方を教えて頂きたいです。よろしくお願い致します。

B (思考 図1に示すように直交座標系を設定する。 初速度の無視できる電荷g (g>0),質量m の陽子が,y軸上で小さな穴のある電極 a の位置から電極 a b 間の電圧Vでy軸の 正の向きに加速され, z軸に垂直でy軸方 向の長さがしの平板電極c, d (z=±ん) か らなる偏向部に入る。 c, d間にはz軸の 124. 〈電磁場中の荷電粒子の運動〉 x 偏向部 h y E 変位 d 図 1 正の向きに強さEの一様な電場 (電界)が加えられている。これらの装置は真空中にある。 電場は平板電極 c,dにはさまれた領域の外にはもれ出ておらず,ふちの近くでも電極に垂 直であるとし、地磁気および重力の影響は無視できるとする。 〔A〕 電極bの穴を通過した瞬間の陽子の速さvo を,V,g, m を用いて表せ。 〔B〕 その後,陽子は直進し,速さのままで偏向部に入る。 (1)陽子が電極 cに衝突することなく偏向部を出る場合,その瞬間のz 座標 (変位) 21 を Vo,g, m, l,Eを用いて表せ。 (2)Eがある値Eより大きければ陽子は電極cに衝突し,小さければ衝突しない。その値 E を, V, l, んを用いて表せ。 〔C〕 陽子のかわりにα 粒子 (電荷 2g, 質量 4m) を用いて同じV,Eの値で実験を行った ところ,偏向部を出る瞬間の座標 (変位) は 22 であった。 Z2を, 21 を用いて表せ。 [D] E の値をE1 に固定し, 電極 c d にはさまれた領域にx軸の正の向きに磁束密度B (B>0) の一様な磁場 (磁界) を加え, 再び陽子を用いて実験した。 (1) Bをある値 B1 にしたところ,陽子は偏向部を直進し, 偏向部を通過するのに時間 T を要した。 B1 と T1 を, Vo, E1, lを用いてそれぞれ表せ。 (2) Bをある値 B2 (0 <Bz <Bi) にしたところ, 陽子が偏向部を出る直前の座標 (変位) は Z3 (230) であった。このときの陽子の速さを,g,m, V, E1, 23 を用いて表せ。 *(3) Bを 0<B<B, の範囲内で変化させて実験をくり返し, 陽子が偏向部を通過するのに 要する時間を測定した。 このとき, BとTの関係を表すグラフはどのようになるか。 図2の(ア)~(オ)の中から最も適当なものを1つ選べ。 T4 TA (ア) T₁ T4 TA TA (イ) (ウ) (エ) (オ) T1 T1 T1 T₁ 10 B₁ B 0 B₁ B B₁ B 0 B₁ B 0 B₁ B 図2 [東京大〕

解決済み 回答数: 1
物理 高校生

どうして対象のOを取ろうとしたのか教えて欲しいです

迷 から、uk√(kは比例定数) とおける。 水深 9.0mの領域 における波の速さを [m/s] 浅瀬における波の速さを [m/s] 水深 9.0mの領域の水深をん(=9.0[m]), 浅瀬 01 より、 の水深を〔m〕 とすると, 屈折の法則 n12=- V2 h₁ 19.0 9.0 = V2 V h2 V h₂ ゆえに h= =3.0[m] 3 60° (4) 右図のように, hhhs の水深が海岸に近づくほど小さ くなる海底が続いているとすると,射線は矢印のように回り 込んでくる。 海岸に近いところでは水深が0mに近づくので, において 波の速さも0m/s に近づく。 屈折の法則 sin V2 20m/sと考えると, sinr→0, すなわち, 0°となる。 したがって, 屈折角は 0° に近づく。 これは, 波面が海岸線 と平行になることを意味する。 146 4個 (4) 深さ h3 ha h5 海岸 146) センサー34 指針 反射波を別の波源から出た波として、干渉条件を考える。 ● センサー35 センサー 36 [解説] 壁に関して Oと対称な点を O' とすると, 反射波は O' から 出たように見える。 壁での反射 で波の位相が変わらないので, 0.0' は同位相の波源と考えれ ばよい。 ここで, 波の干渉の平面図は, 81 10A 波源を結ぶ線分上にで きる定在波を拡張して 考える。 O'B=√(6入)+(8)=101 1.8 A より |O′B-OB|=|10入-8入|=2入 31- -37 m=2 m=0 面に達し との交点 2入=1×2m (m=2) 2 HB 発する素 える。 -38 と書けるので,Bは, 壁 から左向きに数えて2番 目の, 0から出た波とそ の反射波が強め合う線 線が通る。 また, 波源 0 0′ を結ぶ線分上 にできる定在波の節や腹の 位置をもとに,節線や腹線 の様子を描いて解く。その とき,m=01 2 … の どの条件にあてはまる節線, 腹線であるかを示しておく こと。 3 5 ---- 81 別解 線分OB上の点を Pとすると -31- 11 10'0-0|=6入 であり , -x2m (m = 6) 1/2× と書けるので,Oは6番 61=- 。 目の強め合う線が通る。 0 m=6543210 A したがって, OB間には5本の腹線が通る。 2本の腹線の間に節線が1本ずつあるので, 線分 OB上に波が 互いに弱め合う点は4個ある。 2≤ | OP-OP|≦6入 である。 波が弱め合う条件 から, 21≤(2m+1) ≤61 を満たす整数の個数を 求めてもよい。 波の反射では,反射面 について波源の対称点を考 えるとよい。 油の +9

回答募集中 回答数: 0