学年

教科

質問の種類

物理 高校生

(1)について質問です B室のところで圧力をp1として計算しているのはなぜですか?

状態 1 A 室 IS B室 To To L L 265 断熱変化■ 図のように,両端を閉じた長さ2L, 断面積Sのシリンダー内部に, なめらかに動く厚さの無視 できる壁を取りつけ, A室およびB室に区切る。このシリ ンダーおよび壁は断熱材でつくられており, A室内の気体 はヒーターにより加熱できるものとする。 A室およびB室 状態 2 のそれぞれに, 温度 To の単原子分子理想気体1mol を封 入すると,気体の圧力はともに po となり, 壁はシリンダー の中央に静止した (状態1)。 次にA室内の気体を加熱した A 室 B 室 T1 T2 d ところ, A 室内の気体の圧力が上昇し、壁がシリンダーの中央よりd (<L)だけ右 に移動し静止した(状態2)。 A室内の気体が吸収した熱量Qと壁の移動量dの関係を求 めたい。 気体定数をRとする。 (1) 状態2におけるA室内の気体の温度 T, およびB室内の気体の温度T2を, To, L, d, Do, p を用いて表せ。 P1 5 =/1/3とし (2) を, L, d を用いて表せ。なお, 単原子分子理想気体の断熱変化では,y=1/3 po てV'=一定の関係が成りたつことが知られている。 (3)状態1から状態2への変化で,A室内の気体の内部エネルギーの変化 4UA, および B室内の気体の内部エネルギーの変化 4UB を, To, R, L, d を用いて表せ。 (4) A室内の気体がB室内の気体に対してした仕事を Wとする。 4U および 4UB を, QWのうち必要なものを用いて表せ。 (5) Q を, To, R, L, d を用いて表せ。 [22 岡山大 改] 254

回答募集中 回答数: 0
物理 高校生

2枚目の解答のオレンジ線を引いているところについて質問です。 問題にはシリンダーとピストンは断熱材で作られている、と書かれているので断熱変化なのかとおもっていたのですが、ばねがついていると断熱変化では無くなるのですか?

1 264 ばね付きピストン■図のように, なめらかに動くピス トンとヒーターを備えた底面積Sのシリンダー内に1molの単原 子分子理想気体を入れる。 ピストンは, ばね定数んのばねで壁に 連結している。大気圧 のとき, シリンダーの底からピストン までの距離が でつりあい, ばねは自然の長さになっている。シ リンダーとピストンは断熱材で作られ,外からの熱の出入りはな いものとする。 気体定数をRとして、 次の問いに答えよ。 (1) このときの気体の温度T を求めよ。 10000000 ヒーター % k mo (2)次に, ヒーターで熱量Qを与えたら気体の温度は上昇し, ばねはxだけ縮んだ。 次の 気体の各量を求めよ。 (ア) 変化後の気体の圧力(イ) 内部エネルギーの増加⊿U (ウ) 気体が外部にした仕事 W' (エ) 加えた熱量 Q (3) ピストンから静かにばねをはずし, 気体をゆっくりと変化させると気体の圧力はpo になった。 圧力と体積の関係をグラフで表せ。 物

回答募集中 回答数: 0
物理 高校生

問題には直接関係ないのですが、B→Cの反応が等温変化なのにグラフが直線なのはなぜですか? 等温変化のときは曲線だと覚えていたので違和感があります...

262 ここがポイント 理想気体の状態方程式は、気体の圧力を、体積をV,物質量をn, 気体定数を R, 絶対温度をTと すればV=nRT である。 特に,単原子分子であれば、その気体の内部エネルギーは U=12nRT=123Dで与えられる。 解答 (1) グラフより pv=pc なので, pc を求めればよい。B→Cは等温変化で あるから, ボイルの法則を B, Cに適用して pcx(10×10-2)=(2.0×105)×(5.0×10-2) pc=pv=1.0×10 Pa また,状態方程式を用いて PDVD 1XRTD よって TD=PDVD R (1.0×10)×(2.5×10-2) (W 8.3 3.0×10²K)--W+0= TЯ-40 (2)状態Aの温度を TA とすると 3 AUDA = 1/2× -×1.0×R(TA-Tb) 状態方程式を用いて DAVA TA=- 1.0×R' VA=VD であるから = PDVD Tb=- 1.0×R AUDA-RTA-TH =R (DA― DD) × VA R 01+0=ULT PA-VA-PPT - VALPA-PD) 100XRTLST YoxR = 12 ((2.0×10)-(1.0×10×25×10の人 = 3.75×10°≒3.8×103J 東日 直頰 (3) 右図 V(X10-2m³) ボイル・シャルルの法則を用いて, 状 態 A, B, C の温度 TA, TB, Tc を求 める。 10 7.5 (1)より,T= 3.0×102K であるから T=2Tn=6.0×102K 5.0 B D 2.5 T=Tc=2T=4Tb=12×102K A→B, C→Dは定圧変化であるか ら, シャルルの法則が成りたち, Vと 0 3.0 6.0 9.0 12 Tは比例関係となるので, グラフは原点に向かう直線となる。 T(X10²K) FUL

解決済み 回答数: 1
物理 高校生

この問題の(4)のことで緑線で囲った部分の言っていることがよく分からないので教えてほしいです。

70. <ピストンで封じられた気体〉思考 図1のように,摩擦なしに動くピストンを備 えた容器が鉛直に立っており,その中に単原子 分子の理想気体が閉じこめられている。容器は 断面積Sの部分と断面積 2S の部分からなって いる。ピストンの質量は無視できるが,その上 に一様な密度の液体がたまっており,つりあい が保たれている。 気体はヒーターを用いて加熱 することができ,気体と容器壁およびピストン との間の熱の移動は無視できる。 真空 真空 真空 2S S 2 12 液体 液体 h 2 液体 ピストン 気体 h+x 気体 h 気体 2 ヒーター 図 1 図2 図3 また,気体の重さ, ヒーターの体積, 液体と容器壁との摩擦や液体の蒸発は無視でき,液体 より上の部分は圧力0の真空とする。 重力加速度の大きさをgとする。 次の問いに答えよ。 〔A〕 まず,気体、液体ともに断面積Sの部分にあるときを考える。 このときの液体部分の 高さは今である。 2 h (1)初め,気体部分の高さは12,圧力はP。であった。液体の密度を求めよ。 (2) 気体を加熱して,気体部分の高さを1からんまでゆっくりと増加させた(図2)。この 間に気体がした仕事を求めよ。 (3)この間に気体が吸収した熱量を求めよ。 〔B〕 気体部分の高さがんのとき, 液体の表面は断面積 2Sの部分との境界にあった(図2)。 このときの気体の温度は T であった。 さらに, ゆっくりと気体を加熱して, 気体部分の 高さがん+x となった場合について考える (図3)。 1 x>0では,液体部分の高さが小さくなることにより, 気体の圧力が減少した。 気体の 圧力Pを, xを含んだ式で表せ。 (2)x>0では,加熱しているにもかかわらず,気体の温度はTより下がった。 気体の温 度Tを x を含んだ式で表せ。 気体部分の高さがんからん+xに変化する間に, 気体がした仕事 W を求めよ。 ④ 気体部分の高さがある高さん+X に達すると, ピストンをさらに上昇させるために必 V要な熱量が0になり, xがXをこえるとピストンは一気に浮上してしまった。Xを求 めよ。 [11 東京大〕

解決済み 回答数: 1
物理 高校生

(1)〜(6)まで分かったのですが(7)が分かりません 教えて頂きたいです

次の文の に入れるべき式を記せ。 図のように、なめらかに動くピストンをもつ断面積 Sの2つの円筒形の容器Aと容器Bが, 大気中で鉛 直に固定されている。2つのピストンは,質量の無視 できる細い棒で連結されている。各ピストンの質量は Mであり, AとBの中にはそれぞれ1モルの単原子 分子の理想気体が入っている。 容器とピストンは断熱 材でできている。 また, Aには加熱用のヒーターが取 り付けられている。 気体定数を属, 重力加速度の大き さをgとする はじめに, AとB内の気体の温度はともに T。 であ A内の気体の体積が V の状態でピストンが静止 している。このとき, AとB内の気体の圧力がそれ ぞれ PA と PBであった。 PA と PBの差 4P (=PA-PB) を M, S, g で表すと (1) となりま た,B内の気体の体積VB を PA, AP, Vo で表すと (2) となる。 ピストン 棒 ヒーター 円筒容器 B 円筒容器 A 次に,ヒーターによりA内の気体を加熱したところ,ピストンがゆっくりとんだけ上昇し, A内の気体の温度は T」に, B内の気体の温度は T2 になった。 この過程でA内の気体がした 仕事を WA, B内の気体になされた仕事を W とする。 A内の気体の内部エネルギーの変化を R, To, T で表すと (3) WB を R, T2, To で表すと (4), WA を WB,M,g, hで表 すと (6) (5),また,A内の気体に与えられた熱量をh, R, To, Ti, Ta, M, g で表すと となる。 なる。 以上では T2 を既知量としてきたが, T2 を T1, Vo, 4P, VB, S, h, R で表すと (7) と

回答募集中 回答数: 0
物理 高校生

名問の森の質問で、下の問題の(1)と(2)のcが全開の場合と、(3)のcがごくわずかに空いている場合の違いはなんですか?

164 熱 57 熱力学 図1のように、両側にピストン D, Eがついている円筒を, 熱をよ く通す壁Sで2つの部分A, B に 分ける。 円筒とピストンは断熱材 でできている。 Sには弁Cがつい ている。ピストンEをSに押しつ けてCを閉じ, Aの体積Vの部 分に絶対温度 Tの単原子分子の 理想気体n モルを入れておく。 以 下のどの間においても,この状態 から始めるものとする。 気体の比 熱比を 気体定数をRとする。 (1) Dを固定して, Bの体積がV になるまでEを引いて固定して ASB V, T D 図 1 A B V V 図2 A V-AV B 図3 E から,Cを全開にする。 平衡状態(図2)の気体の温度はいくらか。 (2)Dを固定し,Cを全開にしてから,Bの体積がVになるまでEを ゆっくり動かす。 終りの状態(図2)の気体の圧力と温度を求めよ。 (3)Bの体積が V になるまでE を引いて固定する。 Cをごくわずか に開けると同時に, Aの圧力が初めの圧力と等しい値に保たれるよ うにDを押してゆく。 その結果, Aの体積がV-AV になったとこ ろでBの圧力がAの圧力と等しくなった(図3)。この間に気体に なされた仕事を⊿Vを用いて表せ。 また, 終りの状態の気体の温度 (早稲田大) と⊿Vを求め, それぞれTVで表せ。

解決済み 回答数: 1
物理 高校生

名問の森の質問です。 下の問題の(1)と(2)のcが全開の場合と、(3)のcがごくわずかに空いている場合の違いはなんですか?

164 熱 57 熱力学 図1のように、両側にピストン D, Eがついている円筒を, 熱をよ く通す壁Sで2つの部分A, B に 分ける。 円筒とピストンは断熱材 でできている。 Sには弁Cがつい ている。ピストンEをSに押しつ けてCを閉じ, Aの体積Vの部 分に絶対温度 Tの単原子分子の 理想気体n モルを入れておく。 以 下のどの間においても,この状態 から始めるものとする。 気体の比 熱比を 気体定数をRとする。 (1) Dを固定して, Bの体積がV になるまでEを引いて固定して ASB V, T D 図 1 A B V V 図2 A V-AV B 図3 E から,Cを全開にする。 平衡状態(図2)の気体の温度はいくらか。 (2)Dを固定し,Cを全開にしてから,Bの体積がVになるまでEを ゆっくり動かす。 終りの状態(図2)の気体の圧力と温度を求めよ。 (3)Bの体積が V になるまでE を引いて固定する。 Cをごくわずか に開けると同時に, Aの圧力が初めの圧力と等しい値に保たれるよ うにDを押してゆく。 その結果, Aの体積がV-AV になったとこ ろでBの圧力がAの圧力と等しくなった(図3)。この間に気体に なされた仕事を⊿Vを用いて表せ。 また, 終りの状態の気体の温度 (早稲田大) と⊿Vを求め, それぞれTVで表せ。

回答募集中 回答数: 0