学年

教科

質問の種類

物理 高校生

なぜこれは電位が急に足し算をし出すんですか? 意味がわかりません。位置エネルギーなら2dの点だけでいいじゃないですか。何やってんですかこれって。 図で教えてくれると助かります。

09316 T〔N〕と 。 り、 7 320 だけ離 ニ運ぶ →B /m 低いから 1773年にキャヴェンディッシュが発見していた。 電気力線と等電位線 物理 例題 69 の点電荷がある。 クーロンの法則の比例定数をko とし,重力の影響は考えない。 真空中で, x軸上の原点に電気量4gの正の点電荷, x=dの位置に電気量4の正 (1) 軸を含む平面内の電気力線の様子を表す図として最も適当なものを下の① ~④の中から選べ。 ただし, 図中の左の黒点は、軸の原点、右の黒点はx=dの 位置を示す。 なお, 図では電気力線の向きを表す矢印は省略してある。また, 等 ■位線を表す図として最も適当なものを, ①~④の中から選べ。 Q (2) x軸上で電界が0になる点はどこか。 0- xxx 1-X 1-43 3 質量(m,正の電気量 Qをもつ荷電粒子をx軸上のæ=2dの点に静かに置いた。 の電荷がx軸上の無限遠点に行ったときの速さを求めよ。 ① センサー 101 電気力線 ①接線が電界の方向 ②密→電界が強い 疎→電界が弱い ③正電荷(無限遠) から 負電荷 (無限遠) ヘ ④等電位面と直交 ⑤ Qから出る電気力線の 本数N=4kQ N ⑥E= andal S (SE に垂直な面積) 等電位線 地図の等高線に対応 正電荷→山の頂上 負電荷→海底の谷底 りになる点あいる センサー102 センサー 103 真空中の荷電粒子の運動 ~mv²+qV=- 2 (重力を考えない場合) Furk 解答 (1) この場合、電気力線は正電荷から出て無限港に行く。 *********** ------- 本数は電気量に比例する。 答えは④ 実際は三次元なので,この平面内の本数が電気量に比例すると は限らない。 等電位線は地図の等高線に対応する。 電気量の絶対値が大き いほど等電位線は密になる。 答えは ② (2) 世界の強さは+1Cの電荷が受ける力である。電界がOK なる点の座標をx(0<x<d) とすると、クーロンの法則よ り ko v=kx²² 4g×1 2² = ko g×1 (d-x)² これより (3-2d) (x-2d) = 0 V=ko エネルギー保存 mx02- 4q 9 + ko (2d-d) 2d ▶309 316 x=2dの点では電界の向きが同じなので不適。 ( 3 無限遠点を電位の基準とすると, x=2dの点の電位Vは, 3koq ....... (1) d +|QV|=| ①②より, v= GK Fr Bxx cd) mu²+Qx0 6koqQ md 2 ゆえに, x= d 3 物理 基礎 物理 24 電界と電位 197

回答募集中 回答数: 0
物理 高校生

この2番の問題なぜ、eがマイナスになるんですか?ほかの問題でプラスになったりマイナスになったりしてわけがわかりません

(3) Step 1 解答編 p.246~247 陰極線 次の文の[ □に適当な語句を入れよ。 電極を封入したガラス管に低圧の気体を入れ,高電圧をかけて放電させる。 ③には,(1)物体によっ ②極の反対側のガラス管壁が蛍光を発する。 これは② コや磁界によって 体の圧力が数 kPa 程度であると、管内の気体が ① する。一方,10Pa以下の圧 力の放電管では, から出る ③がガラスに当たって生じるものである。 ④性) (2) ⑤ 電荷を運ぶ (3) ⑥ て遮られ、影ができる 曲げられる, などの性質がある。 トムソンは3③⑦を測定した。後に ③の正体は⑧の流れであることがわかった。 ② 電子に生じる加速度 右図のように間隔dの平行極板間に電 圧をかける。質量m/電気量-d(≪0)の電子を極板に平行 に入射したときの電子の加速度の大きさと向きを求めよ。 43 d D 3 電子の比電荷と加速度間隔が0.10m だけ離れた平行極板に, 2.0×10Vの電 e €₁ m をかけた。この極板間に置かれた電子 (比電荷 度の大きさは何m/s2 か。 + + + m, -e ? ミリカンの実験空気中に, 2枚の平行板電極を、上下に間隔dだけ離して水平に 置き,電圧Ⅴをかけた。この極板間に質量の電気量帯電した油滴を入れる と,油滴は一定の速させて上昇した。このときの力のつり合いの式を書け。ただし、 油滴が受ける空気の力は油滴の速さに比例し(比例定数k) 重力加速度の大き さをgとする。 64 V 3 3.5×10¹ m/s² ④ mg+kv-q d ⑥ 粒子性 (1), (4) 波動性 (2)(3) 268 第V部 原子分子の世界 D-0 ⑤ 光量子波長が 6.0×10mの光子1個のエネルギーと運動量の甘さを求めよ。 ただし, プランク定数を 6.6 × 10734 J's, 光速を3.0×10°m/s とする。 11,26 1/76×10 [C/kg]) に生じる無 Q ⑥ 粒子性と波動性 (1)光電効果 (2) ラウエ斑点 (3) ブラッグの条件 (4) コンプトン効 果は,光やX線の粒子性と波動性のどちらに関係が深いか。 8,16,23,24,25.26 答 ①①発光 ②陰 ③陰極線 ④直進 ⑤ 負 ⑥電界 ⑦比電荷 ⑧電子 ② eV md' =0 ⑦ 物質波速さ 3.0×10°m/sで運動している電子の物質波の波長は何mか。 ただい 電子の質量を9.1×10 -31 kg, プランク定数を6.6 x 10 J's とする。 Na 34 274 u 2.4×10-10m 3.3×10-19 J, 1.1×10-27kg・m/s 例題 93 右図の光 変えて実験 電効果が走 数をn (1) 金属木 (2) 波長 ギーの (3) 波長 UT 上向き 陰極線の粒- 光 eを用 SP 問 (1) 入 〔 が起こ の光子 に相当 (3) 「電 れなく のほ 電子 ネル り、 動エ が小 流は ( 光の粒 E=h_ 光電効 の運動 Ko, 光 仕事関 Ko=

回答募集中 回答数: 0
物理 高校生

この問題の(4)(5)で何故解説の図c、図dが示すようなa,bの長さが分かるのですか? 教えて頂けると嬉しいです

32. 〈ゴムひもに取りつけられた物体の運動〉 水平な台の上に質量mの物体Aを置き, 図のように自然の長さのゴムひもBを取り つけた。 ゴムひもの右の端を持って水平方向 にゆっくりと引くと,ゴムひもが自然の長さ からαだけ伸びたときに物体が動き始めた。 その瞬間にゴムひもを引くのをやめたところ, 物体ははじめの位置からだけ移動して止まった。 台と物体の間の静止摩擦係数をμ, 動摩 擦係数をμ',ゴムひもが自然の長さからy伸びたときの弾性力は,kを比例定数としてky とする。 重力加速度の大きさをg とする。 また, μμ' とする。 (1) 物体が動き始めたときのゴムひもの伸びα とμの関係を示せ。 (2) ゴムひもが1+αの長さに伸びたときにゴムひもに蓄えられている弾性エネルギーを求 めよ。 (3) 物体が止まるまでに摩擦力がした仕事を求めよ。 (4) 物体が止まったとき, ゴムひもがたるんでいたとする。 μとμ'の間にはどのような関係 があるか, a b を含まない不等式で示せ。 (5) 物体が止まったとき, ゴムひもが自然の長さよりも伸びていたとする。 このとき ゴムひ もにはエネルギーが蓄えられていることに注意して、移動距離6をm,g, k, μ, μ'′ を使 って表せ。 〔学習院大〕 A m x = 0 B 金沢大」 x=l

回答募集中 回答数: 0