学年

教科

質問の種類

物理 高校生

物理重要問題集2024 大問71番の(3)なのですが、シャルルの法則は、初期状態と状態2で一定ではないのですか。

必解 71. 〈気体の状態変化と熱効率〉 熱機関を利用して上昇, 下降するエレベータの 熱効率を求めよう。 図1のように大気中で鉛直に 立てられている底面積S〔m²〕 の円柱形のシリン ダーに質量 Mo〔kg〕のなめらかに動くピストンが ついており,中に単原子分子理想気体が封じこめ られている。 図1のようにピストンの可動範囲は ho〔m〕からん 〔m〕 までである。 重力加速度の大き さを g〔m/s2] とする。 物体 M [kg] ピストン Mo〔kg]- h [m] ho[m] 初期状態 単原子分子 理想気体 状態 2 図1 初期状態は,気体の温度が外部の温度と同じ To [K], 気体の圧力』が大気圧と同じPo〔Pa〕, ピストンの高さがん。 〔m〕である。まず、ピ ストンの上に質量 M[kg] の物体を乗せ、シリンダー内の気体に熱を与える。 しばらく静止 し続けた後, ピストンが動きだした。 この動きだしたときの状態を状態1とよぶ。 さらに熱し続けるとゆっくりとピストンは上昇し,高さがん 〔m〕 に達した。 このときの状 態を状態2とよぶ。状態2になった瞬間に物体をピストンから降ろすとともに熱を与えるの をやめた。ピストンはしばらく静止し続けたが,やがてゆっくりと下降し,高さがん [m] となったところで静止した。 さらに時間がたつとシリンダー内の気体の温度がT [K] にな ったところで初期状態にもどり、この熱機関はサイクルをなす。 (1)状態1のシリンダー内の気体の温度を求めよ。 [Pa] (2) 初期状態から状態までに気体に与えられた熱量を求めよ。 (3)状態2のシリンダー内の気体の温度を求めよ。 (4) 状態1から状態2までに気体に与えられた熱量を求めよ。 (5) 気体の体積をVとするとき,このサイクルのV図を図2にかけ。 (6) このサイクルで熱機関が外にした仕事を求めよ。 (7) このサイクルの熱効率を求めよ。 0 V[m³] 図2 (8)M=2Mo, Mo= PoS =2h の場合の熱効率の値を求めよ。 [12 弘前大〕

回答募集中 回答数: 0
物理 高校生

海底の勾配ってなんですか? 各川の堆積作用は何で決まってるんですか?

7 三角州の分類 Link [ちょう し 鳥趾状三角州 p.38 三角州, p.202 自然条件とかかわりの深い集落立地, p.264 ミシシッピ川の河口に広がる三角州(デルタ) えんご 円弧状三角州 海岸の波や流れに対する河川 の堆積作用の相対的な強さ [海底の勾配 カスプ状三角州 0 準平原 構造平野 堆積 沖積平野 (谷区平野、扉 ・洪積台 角海 ミシシッピ加 © TRIC ③ミシシッピ川河口 (アメリカ合衆国) 河川 の堆積作用がさかんで沿岸流が弱い場合は, 河道 に沿って形成される自然堤防が海側にまでのび 鳥の足跡のような形の鳥趾状三角州になる。 ←6鳥趾状三角州 例: ミシシッピ川 (ア メリカ合衆国),キュ ル川 (アゼルバイジャ ン), マッケンジー川 (カナダ) カイロ ©TRIC/NASA ↑ 4 ナイル川河口 (エジプト) 河道の移動がひ んぱんに生じる河川で, 土砂の堆積が進み, 複数 の自然堤防の間が埋積されて陸地化すると, 海岸 線が円弧状になった円弧状三角州になる。 ←7円弧状三角州 例: ナイル川 (エジプ ト), ニジェール川 (ナ イジェリア), ドナウ 川 (ルーマニア), イン ダス川 (パキスタン), おびつがわ 小櫃川(千葉県) Link 別冊ワーク.10 5 ⑤テヴェレ川河口 (イタリア) 波の侵食作用 が強い場合は, 堆積作用がさかんな本流の河口 近だけに三角州が突出し、 その両側は陸側に湾 して尖状になったカスプ状三角州になる。 せんじょう PICOECKE ところにある段丘ほ 土地の隆起や河川流 ←8カスプ状三角州 例:テヴェレ川(イタ リア) 安倍川(静岡 てんりゅう 県) 天竜川 (静岡県) 9 台地の 12台地の利用

回答募集中 回答数: 0
物理 高校生

Cはなんで浮くんですか? 球皮内の質量が減るとかですか?

AP APo P₁ = Po= RT RTo となる。これらの式より, 球皮内の気体の密度はpi = To と 表せる。 したがって, 球皮内の気体が受ける重力は P.Vg=poVgとなる。一方,Cの球皮内の気体は温度が上 がっても体積は一定であるため、浮力の大きさはF=poVg のま ま変化しない。 以上より, C が浮上する直前で球皮内の気体の温 度がT=Tのときに成り立つ力のつり合い式は, Tc poVg=p.Vg+Mg Po となる。 これより, Tc=- PV PV-M -To: 1.15.2000 1.15・2000-230 ・300≒333K 21 の答② 問6 気球Aについては, 球皮内の気体の質量が一定で,受ける重 力は一定である。また, 体積が一定であるため温度が上がっても 浮力は一定であり, 浮上することはない。 気球Bについては,気球Aと同様に球皮内の気体の質量が一 定で,受ける重力は一定 (po Vg) である。 一方, 問2で考察したよ うに,温度が上がれば体積が増加し, 浮力は大きくなる。 上昇後 の温度がTのときの体積をV, とすれば, 球皮内の気体について のボイルシャルルの法則より, P.V_PoVB となり,VB= To TO が得られる。このとき,受ける浮力はPV=Pomeg IV To なる。したがって, B. が浮上する直前の球皮内の気体の温度を T=TB として,このときに成り立つ力のつり合い式は, PoVBg=poVg+Mg TB Po To -Vg=poVg+Mg となり,これより, TB= =PoV+M POV -To=- 1.15・2000+ 230 1.15.2000 ・300=330 K 24 DVA となり,TB<Tcであることがわかる。 したがって, 気球Bのほ うが気球Cより先に浮上する。 以上より, Bが浮上して, 次にCが浮上し, Aは浮上しない。 22の答⑥ 第4問 コンデンサー 問1. 直流電源の起電力をVとする。 スイッチ1を閉じて十分に 時間が経過したとき, コンデンサーには電流が流れず0となるか ら、抵抗にかかる電圧も0となる。 このとき, キルヒホッフの第 2法則より, 電源の起電力とコンデンサーにかかる電圧が等しく

回答募集中 回答数: 0
物理 高校生

Cはなんで浮くんですか? 球皮内の質量が減るとかですか?

AP APo P₁ = Po= RT RTo となる。これらの式より, 球皮内の気体の密度はpi = To と 表せる。 したがって, 球皮内の気体が受ける重力は P.Vg=poVgとなる。一方,Cの球皮内の気体は温度が上 がっても体積は一定であるため、浮力の大きさはF=poVg のま ま変化しない。 以上より, C が浮上する直前で球皮内の気体の温 度がT=Tのときに成り立つ力のつり合い式は, Tc poVg=p.Vg+Mg Po となる。 これより, Tc=- PV PV-M -To: 1.15.2000 1.15・2000-230 ・300≒333K 21 の答② 問6 気球Aについては, 球皮内の気体の質量が一定で,受ける重 力は一定である。また, 体積が一定であるため温度が上がっても 浮力は一定であり, 浮上することはない。 気球Bについては,気球Aと同様に球皮内の気体の質量が一 定で,受ける重力は一定 (po Vg) である。 一方, 問2で考察したよ うに,温度が上がれば体積が増加し, 浮力は大きくなる。 上昇後 の温度がTのときの体積をV, とすれば, 球皮内の気体について のボイルシャルルの法則より, P.V_PoVB となり,VB= To TO が得られる。このとき,受ける浮力はPV=Pomeg IV To なる。したがって, B. が浮上する直前の球皮内の気体の温度を T=TB として,このときに成り立つ力のつり合い式は, PoVBg=poVg+Mg TB Po To -Vg=poVg+Mg となり,これより, TB= =PoV+M POV -To=- 1.15・2000+ 230 1.15.2000 ・300=330 K 24 DVA となり,TB<Tcであることがわかる。 したがって, 気球Bのほ うが気球Cより先に浮上する。 以上より, Bが浮上して, 次にCが浮上し, Aは浮上しない。 22の答⑥ 第4問 コンデンサー 問1. 直流電源の起電力をVとする。 スイッチ1を閉じて十分に 時間が経過したとき, コンデンサーには電流が流れず0となるか ら、抵抗にかかる電圧も0となる。 このとき, キルヒホッフの第 2法則より, 電源の起電力とコンデンサーにかかる電圧が等しく

回答募集中 回答数: 0
物理 高校生

ここの問題で何故√を使うのか、分かる方お願いします!

物理基礎 問4 一般に,大きさTの力で引かれた一様な弦 (糸) を伝わる横波の速さは, Tに比例することが知られている。 図5のように、水平な台上の左右のなめらかな滑車に通した糸の両端に質 量mのおもりと質量4mのおもりをそれぞれつるした。 左の滑車からの距 離がL, 右の滑車からの距離が2Lとなる位置の糸を振動装置の振動源Oに 固定して水平に張った。 振動装置は台に固定されている。 振動源Oと左の 滑車の間の糸を糸 A, 右の滑車の間の糸を糸Bとする。 振動装置の振動数 を調節して,糸Aが共振して腹が二つの定常波定在波) が生じるようにし た。このときの糸A, B の振動のようすの概形を表す図として最も適当な ものを、下の①~⑤のうちから一つ選べ。 ただし、このとき糸Aが振動源 0を引く力の大きさと糸Bが振動源を引く力の大きさは異なっているが, 振動源は左右に動くことはないものとする。 4 問5 次の文章中の空欄 なものを、下の①~⑥ の 電磁波は、ある場所で なって空間を伝わるもの 進行方向が垂直な ア べて電磁波であり、波長 可視光線より波長が長い どで利用されている。 [⑤ L 2L 滑車 糸A 糸 B ■滑車 振動装置 おもり 台 おもり m 14m A) λ = L f = * ア ① 縦波 ② 縦波 ③ 縦波 ④ 横波 ⑤ 横波 横波 mg kome B) λ = 7 kh 4my 5 10g -0.00 糸B 糸 A 糸 A 糸B 定常波は生じない L 糸 A 糸B 糸 A 糸B - kN 4mg kamg 糸A 糸B 22L

回答募集中 回答数: 0