学年

教科

質問の種類

物理 高校生

オームの法則の導出のところで、最後にRを逆数で置かなきゃ成り立たないことは分かるのですが、どうして逆数としてRを置くのか教えて頂きたいです。

第4編 電気と磁気 抗に電流が流れていないときには電圧降 下はOVであり,抵抗の両端は等電位で ②電圧降下 抵抗 R[Ω] の導体に電流 I[A] が流れると, オームの法則により, 抵抗の両端の間で RI[V]だけ電位が下が る。これを電圧降下という(図42)。抵 voltage drop 電位 受けているとすると,この抵抗力と電場から受ける力のつりあいより 電圧 e V = kv 降下 (34) 低 RI[V] eV この式よりv= kl となるので,これを (33) 式に代入すると 抵抗 R [Ω] 位置 eV I = en X xS= kl e²nS V kl (35) 電流 [A] I=enus 休 と表される(図43)。 (33) 復習 問21 断面積 1.0×10 m² の導線に 1.7A の電 流が流れているとき, 自由電子の平均 移動速度v [m/s] を求めよ。 導線1.0m² 当たりの自由電子の数を 8.5×1028/m3, 電子の電気量を-1.6 × 10-19 C とする。 ② オームの法則の意味 図44のように, 長さ[m], 断面積 S[m²] の導体の両端 に電圧 V[V] を加えると, 導体内部に E = ¥ [V/m] の電場が生じる。導体中の 自由電子はこの電場から大きさe ¥ [N] の力を受けて、陽イオンと衝突しながら 進むが,自由電子全体を平均すると一定 の速さ [m/s]で進むようになる。 この とき,自由電子は陽イオンから速さ”に 比例した抵抗力ku [N] (k は比例定数) を 258 第4編 第2章 電流 自由電子全体を平均したもの 速さ 電場E= 陽イオン 静電気力 e 抵抗力 P222 陽イオン S〔m²] ある。 C オームの法則の意味 電子の運動と電流 断面積 S[m²]の導 体中を自由電子(電気量-e [C]) が移動す る速さを v[m/s], 単位体積当たりの自 由電子の数を n [1/m] とすると, 電流 の大きさI[A] は 図43 電子の運動と電流図の 断面 A を t[s] 間に通過する自由電 子は,断面Aの後方 長さ of [m] の円柱部分に存在していたと考え られる。 ●の円柱内の自由電子の 数は 何個分 体積 N=nx (ut XS)= nutS であり,合計の電気量の大きさは Q=exN=envtS である。 これと (31) 式 (p.256) より envtS t 図 42 電圧降下 これは,オームの法則を表している。 ここで kl R= (36) Op.257 オームの法則 e²nS V 1= (32) R 百由電子 とおくと I = が得られる。 V 断面積 S R vt D抵抗率 k ロー ①抵抗率 (36) 式において, e²n をp とおくと,抵抗R [Ω] は次のよう 10 に表すことができる。 映像 Link Web サイト 抵抗率 R=p (37) 抵抗 2R S 長さ2倍にすると R[Ω] 抵抗 (resistance) [m] 抵抗率 I=- t = envS 15 〔m〕 抵抗の長さ (length) S〔m²] 抵抗の断面積 抵抗 R S 断面積2倍にすると -1〔m〕 V[V] 図44 オームの法則の意味 比例定数は,注目する物質の材 質や温度によって決まる。これを抵 2S- 抗率(または電気抵抗率, 比抵抗) といい, resistivity 単位はオームメートル(記号 Ω·m) で ある。 抵抗 1/2 ①図 45 長さ 断面積の異なる抵抗 問22 断面積が2.0×10-7m² 抵抗率が1.1×10Ω・mのニクロム線を用いて, 1.0Ω の抵抗をつくりたい。 ニクロム線の長さを何mにすればよいか。 [Link 259 復習

解決済み 回答数: 1
物理 高校生

202の(3)を教えてください。(2)と同じになると思いました。

こり、 という. 分子内部での電子 より電荷のかた この現象を利用している.また, (3) )のかたよりによってお 200 (クーロンの法則) 次の問いに答えよ. クーロンの法則の比例定数はk=9.0×10N・m²/C2 とする. (1) 2つの点電荷g1 = 3.0×10 C, g2=6.0×10 Cを3.0m離しておくときの静電気力の大きさ は何N か. 20×10-12 12×1.3×101 1.8×10-2N (2) 2つの点電荷g1 = 3.0×10 C, g2=6.0×10 Cの間に0.20Nの力がはたらいた. 点電荷 間の距離は何か。 =9.0×109.3.0×106×6.0×10%= 390x 10'm 3点電荷71=3.0×10 °Cと点電荷g2 を 1.0m離しておいたら270-Nの力がはたらい た点電荷Q2の電気量は何Cか. 9.0×104×3.6×106Q2=27×10-3 H Q2 28×6-3 9.5×10°×3×107 練習問題 A 201(クーロンの法則)+3.0×10 C, -1.0×10-Cの電荷をもつ同じ大きさの2つの小さな 金属球が0.30m離れた位置におかれている。 クーロンの法則の比例定数を9.0×10°N・m²/C2 とする. (1) 2球が互いに及ぼしあう力の大きさは何Nか、またそれは引力か斥力か. 次に2球をいったん接触させた後,再び 0.30m離した. (2) 各球のもつ電荷はそれぞれ何Cか. (3)このとき、2球が互いに及ぼしあう力の大きさは何Nか.またそれは引力か斥力か. 202. (静電誘導と誘電分極) 材質と大きさが同じで、電荷をもっていない2つの金属球A,Bに 帯電体Cを近づけて, 図のように次の順に操作をするとき, 金属球の表面に現れる電荷の分布を 図に示せ. C A B (1) 接触しているA,BのAに負の帯電体Cを近づける. (2) Cを近づけたまま, AとBを少し離す. (3)(2)の状態から Cを十分遠くに離す. B (2) (4)(3)の状態から, A, B を十分遠くに離す. A B A,Bを不導体(誘電体)でできた球D,Eにかえて, (3) 上の(1)~(3)と同じ操作を行う. B (5) (3)のとき,D,Eの表面に現れる電荷はどうなるか. (4) 文章で答えよ.

回答募集中 回答数: 0
物理 高校生

1番下の式に重力を斜面方向に分解した分力の仕事が書かれないのは何故ですか? 運動中は働かなということですか?

チェック問題 3 滑車と放物運動 やや難 15分 図のように, 上端に滑車のつい また傾角30°の粗い斜面がある。 質量 mの台車 Aの上に質量mの球Bを 乗せ、軽い糸で滑車を通して質量 4mのおもりCにつなげ, 全体を静 かに平板上に置いた。台車は,動 √3 m B C mA 4m 30° 車 摩擦係数・ の斜面上Lだけ登り, 滑車に衝突すると, 球はその 3 ときの初速度で空中に飛び出していって最高点に達した。 (1) 球が飛び出す速さ はいくらか。 (2) 球が飛び出した位置からはかった,最高点の高さんはい くらか。ただし、最高点での球の速さは0となる。 解説 (1) 速さを問うので,エネルギーで解 こう。 まずは、動摩擦力から出してみよう。 図aで,台車と球の斜面と垂直方向の力のつ り合いの式により垂直抗力 N は, -30° N = 2mg cos30°= √3mg 2mg よって、動摩擦力の大きさ Fは, 図 a √3 √3 3 3 F = 1 -N= × √3mg = mg ① ここで,台車と球に注目して 《仕事とエネル ギーの関係》を立てると、 「3要素は (ばねナシ), 前 (速さ0), (高さ0とする) 中し T OF 130° 後 (速さひ)(高さはLsin30°=12L)で. 高さ 0 とする 図 b |---------- 1 0+ (−F × L) + (張力T) ×L=1/22m² +2mg×1/2 L となるね。 未知 この式からは求まるかい? 12

回答募集中 回答数: 0
物理 高校生

(2)で〖考え方〗の地図に当てはめて考えてみたら、 2枚目の写真みたいになって①の-Eだけ私の答えと一致しませんでした。 正しい図を教えて欲しいです🙏

基本例題 48 電位と電圧 右図① ② は回路の一部である。 矢印の向き に電流 (大きさ! が流れており. 電池の起電力 E (内部抵抗=0Q) 抵抗の抵抗値をRと する。 ①と②の場合それぞれについて答えよ。 (1) 点aの電位を0とする。 点b, 点cの電位を ① E + a b ② E 求めよ。 (2) 点bを接地するとき, 点a, 点 b, 点cの電 . a b R R 位を求めよ。 (3) E=1.5V, I = 0.10A, R = 20Ω のとき, ac間の電圧を求めよ。 地図に当てはめると,電位は標高,電圧は標高差に相当する。 電池では, b がaより標高 (電位)はEだけ上がる。 考え方 22 i) a RI ii) b C → 抵抗では,b cへ電流が流れるとき,cがbより RIだけ標高(電位) が下がる。 【解説】 (1) 考え方のi), i) より, E RI ①では,点aの電位は 0 点bの電位はE, 点cの電位はE-RI となる。 R a 同様に考えて ② は,点aの電位は0点bの電位はE, 点cの 電位はE+RI となる。 (2) 点bを接地するから, 点b の電位は0。 a よって、①では点aの電位はEだけ下がるので-E, 点cの電 位はRIだけ下がるので-RI 矢印の先が電位が となる。 高いことを示す。 同様に,②では,点b の電位は 0 点aの電位は -E,点cの電 位はRIだけ上がるのでRI A00.0 となる。 (3)①:ac 間の電圧=|a の電位 -c の電位 | なので, (1)より, 10-(1.5-20×0.10)|= 0.5V ② ①と同様に, 0 - (1.5+ 20 × 0.10)|= 3.5V しる す A 08.02) 407- NA 02.0 A02.0

解決済み 回答数: 1