学年

教科

質問の種類

物理 高校生

物理です至急お願いします、 教科書の問題を解いたのですが答えが見つからないので正しいか見てほしいです。

例題 8 ヤングの実験 2枚のついたてA, B を平行に立て, Aにはス リット So, B には狭い間隔 dでスリット S1 S2 が備えられている。 Bから距離Lはなして, A, Bに平行にスクリーンCを置く。 S の左側の 光源から、波長の単色光 (赤色) を送ると, C に明暗の縞模様が観察された。 S1, S2 の垂直 等分線とCとの交点をOとする。 So から S, 光源 S2 までの距離は等しく, L≫ d とする。 次の各問に答えよ。 S₁ L B (1) 点0から上向きに距離 x はなれた点をPとする。 S, S2 から点Pまでの光の経路差を, d, L, を用いて表せ。 ただし, L≫x とし, 0が十分に小さいとき, sin0≒tan が成り立つことを用 いよ。 (2)点から上向きに数えて1番目の明線と点0との間の距離を求めよ。 目 光 仮 ト 求 準 10 75 ① 指針 S, S2 から点Pまでの2本の光の経路は,L≫dなので,平行とみなし、経路差を考える。 2 この経路差が波長の整数倍のときに,2つの光は強めあう。 解 (1)S1, S2 から点Pまでの光の経 路は, L≫dであり, 平行とみなすこと ができる。 したがって, 図のように, 経 路差は dsin である。 0は十分に小さ いので, 近似式を用いると, L x dsin0≒dtan0=d ...1 P Sz 0 0 S₁I 経路差 dsin 0-m) (2)点から数えて1番目の明線は, S, S2 からの経路差が入となる位置にできる。 求める距離を x' とすると, 式 ① を用いて, L x'= L入 d 類題 8 ヤングの実験で, 間隔が0.50mmのスリットに単色光を入射させたところ, 1.5m はなれた スリットに平行なスクリーン上の中央付近に、間隔が1.8mmの干渉縞が観察された。この光の 波長を求めよ。 ③ 15 20 TRY 干渉縞のようすを考えよう 例題8において,次の (ア)~ (エ)に示すように実験条件を変えた場合, 点0から数えて1番目 この明線の位置は、0に近づくか, 0から遠ざかるか, それとも変わらないか。 理由とともに答 25 えよ。 (ア) スリットの間隔dを大きくした場合 A = L とざかる (イ)スリットからスクリーンまでの距離Lを大きくした場合 近づく (ウ)光源の単色光を赤色から青色のものに変えた場合→小さくなるか (エ) BC 間を屈折率n (1) の液体で満たした場合 202 第II章 波動 ・きょり→丈 入は小さくなる→ちがおく 4 スク

回答募集中 回答数: 0
物理 高校生

なかなか解けないのでどなたかこの問題を解説して頂きたいです

L 14101 40 多 半角/全角 ! # あ $ う % え & お 漢字 1 ぬ 2131 3 あ 4 う 5 K Q W tab → 以下の問いでは、重力加速度の大きさをとして答えよ。 【問1】質量m の小物体が液体中を落下するときは、 重力 mg の他に、 液体 との間に抵抗力が働くと考えられる (浮力も考慮する必要があるが、 体積 が小さく浮力は無視できるものと仮定する)。 実験と測定を行い、ある質量1kgの物体の、時刻 t [s] における位置 y(t) [m] (液面からの深さ、y軸を液面を原点として、下向きを正にと る)は となることが分かった。 y(t)=2g(t+2e-lt-2) (i) 時刻 t における速度vy(t)、加速度 ay (t) をそれぞれ求めよ。 (6) y (ii) 横軸をt縦軸をyとしてvy (t) のグラフの概形を 0 ≤t ≤ 20 の範囲で描け。 (iii) lim vy(t) を求めよ。 また、この結果を物理的に解釈せよ。 t→∞ 抵抗力 重力 mg (iv) 運動方程式を利用して物体に作用する抵抗力の大きさ fを求め、 fvに比例することを示せ。 【問2】 水平面上を円運動する、 質量が3kg のおもちゃの車を考える。 円運動の中心を原点にとり、円運動して いる平面上に適当な2つの軸(z軸と軸)をとるとき、時刻における車の位置 = (s,y) が次式のように なっていたとする: (x(t),y(t)) =2(cos(+12), sin(+2)) (7) (r,y の単位は [m]、tの単位は[s] とする。) (i) 0 ≤t < 2 の範囲で、車の軌跡を描け。 (ii) 角速度 ω を求めよ。 (iii) 時刻 t における車の速度 J = (Vx, Vy) と、その大きさv=vvz + v7z [m/s] を求めよ。 (iv) 時刻 t における車の加速度 が d = (ax, ay) (8) (9) (a,(t), a,(t)) = (-sin (²), cos (+1)) - (cos (+12), sin (+²)) 212 (10 になることを、速度の微分を計算して確かめよ。 (v)加速度の大きさα = || を求めよ。 ※ペクトルの大きさと内積の関係、 (cos (12), sin (12)) = で、互いに直交する = 1 にあらわれるベクトル (-sin (2), cos (2)) が、それぞれ大きさ1 = =121=1.2=ことを用いると、計算が簡単にできる。

回答募集中 回答数: 0
物理 高校生

(6)浮力は使えないのでしょうか

124 2014 年度 物 II] つぎの文の に入れるべき数式を 図3-1のように, 大気圧P。 中に支持棒で天井に固定されたピストンに対し て,鉛直方向になめらかに動く断面積S の円筒容器が静止している。円筒容器 の中には1モルの単原子分子の理想気体 Aが閉じ込められており、その底には 質量 M の加熱器が取り付けられている。 床には底面積2S の円筒状の水槽が置 かれており、その中には密度の水が入っている。 円筒容器とピストンは断熱 材でできており,また円筒容器の壁の厚みと質量は無視できるものとする。理想 気体の気体定数を R,重力加速度の大きさをgとする。 はじめに図3-1のように,円筒容器の下面は水面からはなれた位置で静止し ている。このときのAの圧力は P1, 体積は V, 絶対温度は T, であった。 P」を (2) とな R, T,, V, で表すと (1) M をg, Po, P,, S で表すと る。 つぎに図3-2のように,Aに熱量Q をゆっくりと加えると円筒容器がんだ け降下し、その下面は水面と一致し Aの絶対温度は T2 になった。 ん を S, T.. T2, V, で表すと (3) となる。この過程でAの内部エネルギーの変化をん P1, Sで表すと (4) Aが外部にした仕事を Q で表すと (5) とな る。 さらに図3-3のように,Aに熱量Q をゆっくりと加えると円筒容器がんだ と け降下し,Aの圧力は P2, 絶対温度は T, になった。 P2 を P,, h, g, p で表す (6) となるので,この過程の圧力P を縦軸に、体積Vを横軸にとった P-V 図のグラフの傾きはg, S, p で表すと (7) となる。この過程でA 外部にした仕事をP, g, h, S, p で表すと (8) となる。

回答募集中 回答数: 0