学年

教科

質問の種類

物理 高校生

大至急です!!!!!!!!!!!!!! 物理の実験なんですけど、この実験から何がわかって何を伝えればいいのかわかりません。助けてください! 3枚目の紙をまとめて提出します!

課題の背景 「物理基礎」 1学期力学分野 パフォーマンス(レポート) 課題 力学は, 物体にはたらく力に着目することによって, 現実に起こる現象を解明・予測する学問で す。一見すると予想と反する現象が観測されたとしても, 物体にはたらく力に基づいて注意深く考 察すると,一貫した原理・原則に従って現象が生じていることを確認できます。 また, 力学の考え 方 力のつりあいや作用・反作用の法則等) を用いると, 物体が静止するという何の変哲もない現 象から, 物体が持つ固有の性質(質量,体積,密度など) を知ることができるのです。 課題 右図に示すように, 台はかりの上に水の入ったビーカーを乗せて, ばねは かりに取り付けられた糸に物体をつるして水中に完全に沈めます。 このと き物体を沈める前と後の台はかりの示す値とばねはかりが示す値をそれぞ れ測定します。 上述の実験を同じ質量 (約115 ~ 120g 程度とする) で異なる 体積を持つ球形の物体 A, B, C (A: 直径4cmの球, B: 直径5cm の球, C:直径 6cmの球) の場合で行います。 ばねはかり 異なる体積の物体を沈めたときの測定結果から, 台はかりが示す値の変化 の規則性について、 以下の点に注意を払いつつ, 分かりやすくまとめてみま しょう。 必要であれば, 水の密度を1.0g/cm3として考えても良いです。 (1) 実験手順を簡潔に示して, 実験によって得られた測定値を正確に, 整理して表にまとめる。 (2) 台ばかりの値の変化の規則性について, 力のつりあいや作用・反作用の法則に基づいて解釈し て,分かりやすくまとめる。 台はかり 本課題を踏まえた発展的内容 上記の実験で見出された法則を活用して, 右図のような複雑な形状を持つ未 知の物体Xの密度 (水の密度よりも大きい) を測定する簡潔な方法を提案し てください。 また, 水の密度よりも小さい物体の密度を測定するにはどのよう にすれば良いでしょうか。 ■本課題における評価ポイント 課題レポートでは,科学的な思考/表現プロセスの全体が評価対象になるので、他の人にも伝わる ように,自分の考え方を, 言葉 数式・図表などを用いながら、 分かりやすく説明してください。 なお,本課題では考察部分の記述から主に次の点について評価します(ルーブリックを参照)。 力のつりあいと作用・反作用の法則を適切に使いこなしている。 • 台はかりが示す値の変化について, ばねはかりの値と関連づけるなど, 実験結果に基づいて科 学的に妥当性の高い考察を提示している。 • 各物体にはたらく力の矢印の作図をするなど, 図表や言葉数式などを用いて, 分かりやすく 書かれている。

回答募集中 回答数: 0
物理 高校生

オ、が分かりません。詳しい解説をお願いします。

図1のように、理想気体が入った容器 A と容器Bがあり, コックの付 2 いた容積の無視できる管でつながっている。 容器Aの容積は Vo で一 定であるが, 容器Bには滑らかに動く軽いピストンが付いていて容積が変 化するようになっている。 ピストンには常に一定の大気圧 Poがかかって いる。容器Aと容器 B, コック, 管, ピストンはすべて断熱材でできてい る。また, 容器Bには気体を加熱および冷却できる温度調節器が取り付け られていて,気体の温度調節が可能である。 温度調節器の体積と熱容量は 無視できるものとする。 次の文章中の空欄 ア~オ に入る適切な数式を記せ。 はじめ、コックは開いていて, 容器A内と容器B内の気体はともに圧力 Po, 温度 To, 体積 Vo の状態にあった。 その後, 過程 ①~③のように容器内の気体の状態を変化させた。 過程 ① まず, コックを開けたまま気体をゆっくりと加熱した。 これにより、温度調節器から気体へ熱量Q 容積 Vo 容器A 大気圧 Po |!! コック 温度調節器 emm オ:Q 容器B が与えられ, 容器A内と容器B内の気体の温度はともに 2T になった。 加熱後の容器B内の気体の体積は [ア] である。また、この過程で容器内の気体が外部にした仕事はイであり、容器A内と容器B内 の気体の内部エネルギーは,あわせてゥだけ増加した。 過程 ② 次に、コックを閉じ、 容器B内の気体だけをゆっくりと冷却し、体積をV にした。 冷却後の容器B 内の気体の温度はエである。 過程 ③ 次に、再びコックを開いた。 温度調節器を作動させずにしばらく待つと、容器A内と容器B内の気 体の温度はともに To になった。 この過程でピストンの位置は変化しなかった。このことから, 過程 ② で 気体から温度調節器へ放出された熱量はオであることが分かる。 7: 300 イ: 2Povo 7: Q-2P₂ Vo I: 3 To

回答募集中 回答数: 0
物理 高校生

この問題の(き、く)の部分の解決で、何故x軸方向にE/Bで移動する観測者と分かるのですか? どなたか教えて頂けると助かります

VI. 次の文を読み、下記の設問1・2に答えよ。 解答は解答用紙の所定欄にしるせ 14 2022 年度 物理 電場や磁場の影響を受け, y 図1のように,y 軸方向正の向きに強さE の一様な電場がかかっているとする。 電気量 g (g > 0)の荷電粒子が時刻t = 0 に原点 0 から初速度 0(0) で運動を開始した。 時刻でのこの粒子の位置は (x,y)=(あ, である。 である。 ・図2のように、xy平面に垂直に、紙面の裏から表に向かって, 磁束密度B の一様な 場がかかっているとする。 質量 m, 電気量 g (g > 0) の荷電粒子が時刻 t = 0 に隠さ 0から初速度v = (u,0)(v>0) で運動を開始した。 この粒子が運動開始後に 初に y 軸を通過するときの時刻はt= E V y 平面上を運動する荷電粒子を考える。 0 STUSKO 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy平面に垂直に紙面の から表に向かって、 磁束密度B の一様な磁場の両方がかかっているとする。 質量m, t 気量g(g> 0)の荷電粒子が時刻t = 0 に原点Oから初速度 (0,0)で運動 開始した。この粒子の x 軸方向,y 軸方向の速度をそれぞれ ux, vy, 加速度をそれぞ = Q1 Q とすると,運動方程式は 図1 X (x,y)=(0, B [O うで,そのときの座標は え) V い y 図2 B 立教大 0 図3 とな で運 で道 道を Vo 1. 2.

回答募集中 回答数: 0
物理 高校生

この問題の(カ)で、v'=√V x二乗+V y二乗となっているのですが、これは、 x成分と y成分の速さを合成したということですか?

8. <斜面をのぼる小球の運動〉 水平な面(下面)の上に,高さんの 水平な平面(上面)が斜面でなめらか につながっている。 図に示すように x, y, y'軸をとり、斜面の角度は軸方向から見た断面図 である。 下面上でy軸の正の向きに y軸とのなす角を 6, として. 質量 mの小球を速さで走らせた。 な お.06 <90° かつ">0とし、小球は面から飛び上がることはないものとする。 また, 重 力加速度の大きさをgとし、斜面はなめらかであるとする。 次のアイに入る最も適当なものを文末の選択肢群から選べ。 また. ウクに入る数式を求めよ。 (1) 斜面をのぼりだした小球は、x軸方向にはア, 斜面上のy'軸方向にはイをす る。 小球が斜面をのぼりきって上面に到達したときの小球の速度x成分の大きさは y成分の大きさはエ(のぼりきる直前の速度のy成分の大きさに等しい)。 ま た。斜面をのぼり始めてから上面に到達するまでにかかる時間はオである。上面で sin 小球の進む方向とy軸とのなす角度を 62 とすると, 0, と 62 の関係は、 と sind= なる。 (2) 初速度の大きさを一定に保ちながら, 0, を0から徐々に増やしていったとき, 0, が小 さいうちは小球は上面に到達した。 しかし, 6, がある角度に達すると上面に到達でき ずに下面にもどってきた。 このときの6cの満たす条件は, sinc=キであり、また 200cのとき小球が斜面をのぼり始めてから再び下面にもどるまでにかかる時間は [クである。 イの選択肢] ア ①等速度運動 ③ 加速度 a-gcos の等加速度運動 ⑤ 加速度 αー の等加速度運動 ⑦ 加速度 α! の等加速度運動 sind 9 tan ② 加速度 α-gsin ⑩ 加速度 α=-gtan ⑥ 加速度 α= COS 6 の等加速度運 の等加速度運動 の等加速度運動 (上智大)

回答募集中 回答数: 0
物理 高校生

解説お願いします🙇‍♀️

⑨9 [2021 立命館大] アに適切な数式を記せ。 次の文章を読み, から最も適切なものを1つ選べ。 重力加速度は一定で, その大きさをg とする。 定されているものとする。 ばねは、質量が無視できるものとし, ばね定数が k, 自然の長 次の問いにおいて, 天井と床は,いずれも剛体 (注; 変形しない物体のこと)であり、 さがL であり、まっすぐ伸び縮みするものとする。 ブロックは,質量がmで,大きさが 無視できるものとし、その運動は,同一直線上から外れないものとする。 図1のように、天井からばねをつるし, ばねにブロックを取りつ けた。 ばねの自然の長さを保つようブロックを手で支え、静かに手 をはなした後、 ばねが最も伸びるまでの運動を考える。 ブロックに かかる力は,重力とばねの力のみであるとする。 図2は, ばねが最 も伸びる途中までの, ばねの長さと, ブロックにかかる重力 (点A と点Cを通る太線) とばねの力 (点Bと点Eを通る太線)の関係を示 す。 ブロックにかかる重力とばねの力がつりあ うとき、ばねの長さはい である。 ばねの 長さがL から(い) になる間に重力がブロック に行った仕事の大きさは、図2のろの面 積と等しい。 また, この間にばねの力がブロ ックに行った仕事の大きさは、図2のは の面積と等しい。 したがって, ばねの長さが (い)のとき, ブロックの運動エネルギーは アである。 ばねがさらに伸び, ブロック 図2 の運動エネルギーが0になるのは, ばねの長さがにのときである。 い とにの選択肢 ① Lo+ mgk ② Lo+mgk 2 ④ Lo+ mg 2k ⑤ Lo+ mg k いにには指定された選択肢 の選択肢 ① 三角形 BED ② 四角形 ABDC ブロックにかかる力 (鉛直上向きが正) Lo ③ Lo+2mgk ⑥ Lo+ 2mg k 1 B! ③ 四角形 ABEC い A: 重力 C 図 1 Di ばね ばねのカレ 傾きん HE 天井 ブロック ばねの長さ q

回答募集中 回答数: 0