学年

教科

質問の種類

物理 高校生

物理基礎の力のつり合いの問題です。基本例題8で、ボールに働く力についてで、いくつか質問があります。 ①Fはバネを右に引いた力と同じですか? ②ボールを右に引く力が働いたら、その反作用でボールが左にバネを引く力がないのはなぜですか? 作用反作用がいつ働くのかがいまいちわかって... 続きを読む

例題 解説動画 基本例題8 力のつりあい 基本問題 58,596465666768 軽い糸の一端を天井につけ、 他端に重さ 2.0Nの小球 をつなぐ。この小球に, ばね定数10N/m の軽いばねの 一端を取りつけ,他端を水平方向に静かに引いた。 糸が 鉛直方向と60°の角をなして小球が静止しているとき 力の ばねの自然の長さからの伸びは何mか。 C 2.0N 10N/m 60° 00000 指針 小球は、重力, ばねの弾性力, 糸の 張力を受けて静止しており,それらはつりあって いる。 ばねの弾性力をF[N], 糸の張力をT〔N〕 と すると, 小球が受ける力は図のように示される。 力を水平方向と鉛直方向に分解し, 各方向におけ る力のつりあいの式を立てる。 これからFを求め, フックの法則を利用してばねの伸びを求める。 水平方向:F- T=0 2 鉛直方向: T 2 --2.0=0…② | 解説 水平方向, 鉛直方向のそれぞれの力 のつりあいから, √3 T[N] √ T(N) 30° 720 [N] 式 ②から,T= 4.0Nとなり,これを式①に代入し てFを求めると, F=2.0√3N ばねの伸びを x[m] とすると, フックの法則 「F=kx」 から, F 2.0√3 x= 2.0×1.73 10 10 -=0.346m 0.5m Point F〔N〕 小球にはたらく3つの力がつりあって いるとき,水平方向と鉛直方向のそれぞれの成 分もつりあっている。 V2.0N 基本例題 9 ばねと作用・反作用 同じばね定数の2つの軽いばね A, B を用意する。 ばね Aの一端を壁に取りつけ, 他端におもりをつるして静止さ せる。一方, ばねBは,その両端にそ して静止 基本問題 71, 72,73 LA 0000000000 [知識] 57. 重さと質量 基本 地球上の重力加速度の大き 大きさを地球上の1であるとして、次の各 (1)地球上での重さが294Nの物体の質量に (1)の物体が月面上にあるとき,その質 (3)(1)の物体が月面上にあるとき,その重 [知識 58. 糸の張力 図のように, 質量 1.0kg のお て静止させた。 このとき, おもりが受ける ただし, 重力加速度の大きさを9.8m/s2 と [知識 59. ばねの弾性力 自然の長さ 0.200mの軽 さが 0.240mになった。 重力加速度の大きさ (1) ばねのばね定数を求めよ。 (2) ばねに質量 5.0kgの物体をつるすと, ヒント ばねの弾性力の大きさは, ばねの伸びに上 思考 60. ばねのつりあい 表は,軽いばねにさ おもりをつるし、ばねの自然の長さからの ものである。重力加速度の大きさを9.8m/s 各問に答えよ。 (1)自然の長さからのばねの伸びx[m]を 弾性力 F〔N〕を縦軸にとったグラフを描い (2)

回答募集中 回答数: 0
物理 高校生

この問題の(1)で、圧力の釣り合いが理解できません😭力の矢印を書いた図を用いて教えて下さると嬉しいです🙇‍♀️

図のような,滑らかに動くピストンのついた断面積Sの容器 がある.容器はピストンを含め断熱壁でできている.容器の底 から,高さαのところに止め具Aがあり,ピストンがこれ以下 に下がらないようになっている.容器内に大気圧と等しい圧力 po, 絶対温度 To の単原子分子の理想気体が入れてある (この状 態を0とする). po 水 Po, To www C |B Ab 玉泉 止め具 Aから高さんの所にあるコックの付いた穴Bから水を コックの高さまで注ぎ, コックを閉める。 次に, 組み込んであ るヒーターから気体に熱をゆっくり加え、容器の上端℃までピストンで動かす. 穴Bから容 器の上端 Cまでの高さをcとする. 水の表面が容器の上端Cに達した後は、水は容器の外に あふれ出る. ピストンの質量および厚さを無視し、重力加速度の大きさをg 水の密度をと して、次の問いに答えよ. 解答は上に与えられた記号 a, b, c, S, Po, To, p, g のみを用い て表せ. (1)ピストンが動き始めるとき (この状態を1とする)の容器内の気体の圧力 p1, 絶対温度T1 定モル比熱 cy モル比熱 を求めよ. その気体の絶対温度と ピストンが

回答募集中 回答数: 0
物理 高校生

21の2問ともできれば図などを用いて解説していただけたら嬉しいです

www n T 9 とする。 物 り, 物体Bの加速度はイm/s2 である。 時刻 2s において, 物 はウmである。 時刻 OS の後, 物体Aと物体Bの位置が再び同じになる時刻は エ また、 その時刻において, 物体Bに対する物体Aの相対速度は である。 オ m/sである。 [19 名城大] 15,16 21 等加速度直線運動のグラフ 水平面上にx軸をと 加速度の成分 (m/s2) り 鉛直方向にy軸をとる。 いま, x軸上の点Aから飛行 機が時刻 t=0s に, 初速度0m/sで出発し, 点Aよりx 軸上の点Bに向けて飛行した後, 点Bに到着する場合を考 える。 AからBへの向きをx軸の正の向きとし,鉛直上向 きをy軸の正の向きとする。 ただし, 飛行機はxy 平面内 を運動するものとする。 飛行機の加速度のx成分と時間の 関係,および速度のy 成分と時間の関係は,それぞれ図1 と図2に示されている。 次の問いに有効数字2桁で答えよ。 (1) 飛行機が最高高度に達したときの水平面からの高さは 何mか。 3 500 1000 O」 時間 (s) 図 1 -3. 速度のy 成分 (m/s) 20 500 1000 時間 (s) -20 (2) AB間の水平距離は何mか。 [22 千葉工大] 15,16 12 ヒント 19 2台の自動車の速度の差が0になった瞬間, 車間距離は最短となる。 20 (エ) 求める時刻を t[s] として, AとBの移動距離についての方程式を立てる。 21 (1) 図2のグラフがt (時間) 軸と囲む面積が鉛直方向の移動距離を表す。 の解説動画

回答募集中 回答数: 0