学年

教科

質問の種類

物理 高校生

画像の問題の答えを教えてください。お願いします!

1図のように,音波をよく反射する高さH の鉛直断崖の下部にトンネルがある。 トンネ ルの手前、入口からの距離がXの地点をPと する。 一定の速さでトンネルに近づいてき た列車の先頭が, 時刻t=0に地点Pを通過 した。 その瞬間に列車の先頭にある振動数 fo の警笛が鳴り始め, 列車の先頭がトンネルに 進入した瞬間に警笛は鳴り終えた。 列車の先頭から距離Lだけ離れた客車中に 10000 0000 000 ・X 1図 B トンネル はA君が,また断崖上の縁にはB君がいる。 A君には振動数がと(く)の2 一つの異なる高さの警笛音が届いた。 一方, B君には振動数の警笛音が届いた。 以 下の問いに答えよ。 ただし, 音の速さはVである。 また, 列車の高さ, トンネルの大き さ, A君およびB君の背の高さは無視してよい。 (1) A君には警笛音がどのように聞こえたか。 次のア~エの中から正しいものを1つ選 べ。 (ア) まず低い方の振動数の警笛音が聞こえ、 少しして振動数 f2の警笛音が混じ りうなりが聞こえた。 その後、うなりが消えると同時に何も聞こえなくなった。 (イ)まず低い方の振動数の警笛音が聞こえ、少しして振動数の警笛音が混じ りうなりが聞こえた。 その後, まずうなりが消え,振動数 f2の警笛音が少しの間 残ったのちに何も聞こえなくなった。 (ウ)まず高い方の振動数 2 の警笛音が聞こえ、少しして振動数の警笛音が混じ りうなりが聞こえた。 その後, うなりが消えると同時に何も聞こえなくなった。 (エ) まず高い方の振動数 f2の警笛音が聞こえ、 少しして振動数 f の警笛音が混じ りうなりが聞こえた。 その後, まずうなりが消え, 振動数の警笛音が少しの間 残ったのちに何も聞こえなくなった。 (2) u, V を用いて表せ。 と2をfo, f B (3) 振動数 の警笛音がA君に届いた時刻 ウ A1 A2 を求めよ。 fo エ (4) B君に聞こえた警笛音の振動数は時間とと もにどのように変化したか。 2図のア~カの中か ら正しいものを1つ選べ。 オ (5) B君に警笛音が聞こえ始めた時刻 t を求めよ。 聞こえ 聞こえ 始める時刻 (6) B君に警笛音が聞こえた時間間隔は警笛が鳴っ 終わる時刻 図 ていた時間間隔よりどれだけ短いか, あるいは長いかを答えよ。 (7) 断崖の高さH が距離 Xに等しく, 列車の速さが のとき, B君にはA君の何 V 10 倍の時間だけ警笛音が聞こえるか。

回答募集中 回答数: 0
物理 高校生

解答お願いします

1図のように, 音波をよく反射する高さH の鉛直断崖の下部にトンネルがある。 トンネ ルの手前, 入口からの距離がXの地点をPと する。 一定の速さでトンネルに近づいてき た列車の先頭が, 時刻1=0に地点を通過 した。その瞬間に列車の先頭にある振動数。 の警笛が鳴り始め, 列車の先頭がトンネルに 進入した瞬間に警笛は鳴り終えた。 列車の先頭から距離 Lだけ離れた客車中に 00000 図 H トンネル はA君が,また断崖上の縁にはB君がいる。 A君には振動数がと つの異なる高さの警笛音が届いた。一方, B君には振動数の警笛音が届いた。 以 下の問いに答えよ。 ただし, 音の速さはVである。 また, 列車の高さ, トンネルの大き さ, A君およびB君の背の高さは無視してよい。 (1) A君には警笛音がどのように聞こえたか。 次のア~エの中から正しいものを1つ選 べ。 (ア) まず低い方の振動数の警笛音が聞こえ、 少しして振動数の警笛音が混じ りうなりが聞こえた。 その後、うなりが消えると同時に何も聞こえなくなった。 (イ)まず低い方の振動数の警笛音が聞こえ、 少しして振動数チュの警笛音が混じ りうなりが聞こえた。 その後, まずうなりが消え、振動数の警笛音が少しの間 残ったのちに何も聞こえなくなった。 (ウ)まず高い方の振動数の警笛音が聞こえ、少しして振動数の警笛音が混じ りうなりが聞こえた。 その後、うなりが消えると同時に何も聞こえなくなった。 (エ)まず高い方の振動数の警笛音が聞こえ、 少しして振動数の警笛音が混じ りうなりが聞こえた。 その後, まずうなりが消え, 振動数の警笛音が少しの間 残ったのちに何も聞こえなくなった。 (2) for 14, V を用いて表せ。 fB ア (3) 振動数の警笛音がA君に届いた時刻 A1 A2 を求めよ。 ウ (4) B君に聞こえた警笛音の振動数は時間とと もにどのように変化したか。 2図のア~カの中か ら正しいものを1つ選べ。 In エ 聞こえ カ (5) B君に警笛音が聞こえ始めた時刻 を求めよ。 (6) B君に警笛音が聞こえた時間間隔は警笛が鳴っ 始める時刻 2図 ていた時間間隔よりどれだけ短いか, あるいは長いかを答えよ。 V 聞こえ 終わる時刻 7)断の高さが距離 Xに等しく,列車の速さが 1/10 のとき, B君にはA君の何 倍の時間だけ警笛音が聞こえるか。

回答募集中 回答数: 0
物理 高校生

(2)について質問です 2枚目が解答なのですが、オレンジの線を引いてるところが分かりません。なぜmは同じになるといいきれるのですか??

(カ) 354 マイケルソン干渉計■ 図のように,光源 Sを出た波長の単色光が, Sから距離 Ls にある 半透鏡Hにより上方への反射光と右方への透過光の光源S 2つに分けられる。 反射光は,Hから距離 LAに固 定された鏡Aで反射して同じ経路をもどり,一部が Hを透過してHから距離 LD 離れた検出器Dに到達 する。 一方, Sを出てHを右方へ透過した光は, 鏡 D [兵庫県大 改] 347 鏡ATE LA 鏡 B 半透鏡H -LS- -LB- AL AL LD 検出器 D Bで反射して同じ経路をもどり、一部がHで反射してDに到達する。 これら2つの光が 干渉する。 初めのHからBまでの距離は LB (LB>LA) で, Bは左右に動かすことができ る。Hの厚さは無視でき, 鏡および半透鏡において光の位相は変わらないものとする。 X Bを少しずつHに近づけるとDで検出される光の強さは単調に増加し, ALだけ動い たとき,最大となった。 逆に, Bを少しずつHから遠ざけると光の強さは単調に減少 し,初めの位置から 4L だけ動いたとき最小となった。 波長をALで表せ。 Bを初めの位置にもどし, 波長を入から少しずつ大きくしていく。 Dで検出される 光の強さは単調に増加し,+4のとき最大となった。 LB-L』を入とで表せ。 次に,光の波長を入にもどし, Bを初めの位置から動かして, Hからの距離がL』 に 等しくなるまで少しずつ動かした。 この間のDで検出される光の強さを観測すると, 250 回最小値をとることがわかった。 このとき,(2)における入と 4入の比を求め よ。 入 [16 新潟大 改] ヒント 353(2)隣りあう2つのスリットを通る光の経路差= (回折後の経路差) (入射前の経路差) 354 (3)250 回目の最小値をとったときの,HとBの距離はLa+24Lであり,最小値は 44L ご とに現れる。

回答募集中 回答数: 0
物理 高校生

(1)がわかりません 解説ではグラフの値をV=E-rIに代入して連立方程式でrを求めているのですが 電流計で測られた値は、分岐した電流じゃないんでしょうか。どうして代入できるのかわかりません 質問の意図が読み取れなかったらごめんなさい

旧ル電のは J TV で 26 Q る電 78 18 (a)) (2) AB間に抵抗xを接続するとき (a) CD 間の電圧Vを求めよ。 (b) 抵抗x と (接地) R と並列に電気容量Cのコンデンサーを接続したとき, コンデンサーの電位 の低いほうの極板に帯電する電気量Qを求めよ。」 例題80 414 電池の起電力と内部抵抗の測定■ 内部抵抗r[Ω],起電力 E[V] の電池があ る。これを用いて図1の回路を構成し, 可変抵抗Rの値を変えながら電流と電圧を測定 したところ、 図2を得た。 電流計の内部抵抗と, 電圧計に流れる電流はないものとする。 (1) 起電力 E[V] を求めよ。 [2] 内部抵抗 [Ω] を求めよ。 (3)R=r の状態は,図2のA, B, C, D,E,Fのうちどこか。 (4) この電池の正・負極を電線でつなぐ (ショートする) ときに電池を流れる 電流I [A] を求めよ。 図 1 電圧(V) 2 A B. 0 1 2 3 電流(A) 図2 (5) 状態Aにおいて,Rの値 R [Ω] およびRで消費される電力PA [W] を求めよ。 (6) 状態 Aにおいて, 内部抵抗による電圧降下 V, [V], rで消費される電力 P, [W] を 求めよ。 例題80 V2 [[/s]

未解決 回答数: 1
物理 高校生

色塗ってるとこの式変形分からないので教えてください!お願いします

こると A cosx と 点dでは CA の媒質の 2πA T -=2U 振動から遅 yは、時刻における原 点での変位に等しい。 ゆえに y=Asin- sin 27 (t-x) ひ ) 波が原点から固定端を経て位置xに伝わるのにかかる時間は,原点から L+(L-x)=2L-xだけ移動しているので、 (3) 2L-x V であるA また,固定端反射では波の位相がずれることから, 時刻における位置x での反射波の変位 y2 は, 時刻t-2-xにおける原点の変位の位相を けずらしたものになる。 2π T Asin (27 (1-21-x)+x|--Asin 2 (1-21-x)on ※B 2L よって y=Asin (4) (2) (3)の合成波の変位をyとすると 277 y=+32=Asin (-)+(-Asin 2(-2-x) T 2π =2Asin T 2L-x V 2 COS 2L- 2π V T 2 <<-A 0 =2Asin となる。 この式において 2Asin T L. cos cos 27 (t-L) 2 (1-x)は振動の位置 x での振幅を表 =(-1)x Asin(ユ ◆ B (2)の結果を直接用いる形の解 法は、彼が原点からx=L で反射して位置まで進む距 離は (2L-x) 固定端にお ける反射で位相がずれるの で、変位は (−1)倍される (位 相が反転する)。 以上より ( のxを (2L-x) にかえて. 変位ys を (-1)倍したもの が yとなる。 t- は時刻に依存した振動を表すので, 波形の進行しない L sin 2x (L-x) cos 2-(1-1) 定在波とわかる。 (5)定在波が最大振幅になるのは COS 2 (t-1)=±1 のときだから y=±2Asin T 2x (L-x) 5 <-%C 固定端は定在波の節節 y= ±2A sin 2x(x) (1)の結果,入=vT と L=2』 を用いると 54 L=±2.Asin2 )= ±2A sin 2x() の最大振幅は2Aである 記の定在波の特徴を用い 図することもできる)。 2A- = 士24sin (12/26) 5 5x 2L 5π =2A cos -x 2L 0 1 5 よって、波形は図a の実線または破線のようになるC -2A セント 75 〈円形波の反射〉 (1) 「反射の際、波の振幅および位相は変わらない反射波は器壁に対して点①と対称な点を波源とする波と同 (2) 反射の際に位相が変わらないので、「2つの波が弱めあう条件』(経路差)=(半波長)×奇数 (3)波源から遠くなると2つの波の経路差は小さくなる。(5)(L上の節の数)=(Oと壁の間にある節の数) (10) ドップラー効果は波源と観測者を結ぶ方向の速度成分によって起こる。 物理重要問題集

未解決 回答数: 1