学年

教科

質問の種類

物理 高校生

教えてください💦

教科書 No.2 物理基礎 PP.34 ~ 73 答えはすべて解答欄に書きなさい。 [1] 次の問いに答えなさい。 (1)力の3要素のうち,カの大きさ, 力の向き以外のあと1つは何か。 (P.35参照) (2) ばねを伸ばしたときの弾性力の大きさは、自然長からの伸びに比例するという法則を何の法則と呼ぶ か。 (P.41 参照) (3) 物体が,現在の運動状態を維持し続ける性質を何というか。 (P.42 参照) (4) 物体の質量がm,生じる加速度がα, はたらく力がFのとき,運動方程式は文字式でどのように表さ れるか。 (P.48 参照) (5)地球上で質量 50kg の人にはたらく重力の大きさは何 N か。 ただし、重力加速度の大きさは 9.8 m/s2である。 (P.49 参照) (6)自然長 0.10m のばねを,大きさ 2.0Nの力で引くと0.12mになった。このばねのばね定数はいくら か。 (P.41 参照) (7) 質量 1.0kg の台車に,次の図のように力を加えた。このときに生じる加速度の大きさを求めなさい。 8.0 N (P.48 参照) 2.0N [2] 力について,次の問いに答えなさい。 (1)次の①~④の力の名称として最も適切なものを,あとの語群から 1 つずつ選び、記号で答えなさい。 (P.35 参照 ) NO ④ [群] A. 弾性力 E. 張力 B. 浮力 F. C. 摩擦力 D. 空気の抵抗力 G. 垂直抗力 H. 静電気力 No.2-1

回答募集中 回答数: 0
物理 高校生

⑶の問題でなんでマーカーの部分の式をかけるのか教えてほしいです!!!

し 秒 [15] 【センターより】 音波に関する次の文章を読み、下の問い ((1)~(3)) に答えよ。 音のドップラー効果について考える。 音源、観測者。 反射板はすべて一直線上に位置し ているものとし、空気中の音の速さはVとする。また、風は吹いていないものとする。 (1)次の文章中の空アイに入れる語句と式の組合せとして最も適当なもの を,下の①~④のうちから1つ選べ。 図1のように、静止している振動数の音源へ向かって、観測者が速さで移動 している。このとき、観測者に聞こえる音の振動数はア音源から観測者へ向か う音波の波長はイである。 音源 ア ①よりも小さく ②よりも小さく イ V-v fi V チェ V2 よりも小さく J (V+v)fi V-v ④ と等しく fi V @ と等しく V2 と等しく (V+v)fi V-v 0よりも大きく f₁ V よりも大きく f₁ V2 よりも大きく 観測者 (V+v)fi (2) 図2のように, 静止している観測者へ向かって, 振動数の音源が速さで移動 している。 音源から観測者へ向かう音波の波長を表す式として正しいものを、下の ①~⑤のうちから1つ選べ。 =2 ① √2 観測者 図 2 V-v [③] V+v V² ④ (V-v\/ 音源 f2 V² (V+0)f2 (3) 図3のように, 静止している振動数の音源へ向かって, 反射板を速さで動か した。 音源の背後で静止している観測者は, 反射板で反射した音を聞いた。 その音の 振動数はf であった。 反射板の速さを表す式として正しいものを,下の①~⑧ のうちから1つ選べ。 3 観測者 音源 反射板 ① 113-114 ⑤ fs-fiy fath V 図 3 ② fatfav③ チューナ ⑥ fs ④ h-hy チュ 近

未解決 回答数: 1
物理 高校生

この問題のイはなぜ⊿yに1/2がついているのですか?等加速度運動の式だとついていないのが正解のように思えます

次の文章を読んで, れの解答欄に記入せよ。 なお, に適した式を問1、問2では,指示に従って解答を で与えられたものと同じ式を表す。た はすでに だし,以下では,弦が受ける重力は無視できるものとする。 必要であれば、以下の関係式を使 ってもよい。 01 のとき sin0≒0≒ tan 0 7 x 関数y=sin(ax+b) の傾きは xの関数 y=cos (ax+b) の傾きは =-asin(ax+b)(a,b: 定数) Ay Ax sin(a+β)+sin(a-β)=2sinacos β, sin (a+β)-sin(α-β)=2cos a sin β T (1) 図1のように,一定の大きさTの力で水平に張られた線密度(単位長さ当たりの質量)p の十分に長い弦を伝わる横波について考える。 図2のように, 微小時間 At の間に,波が 水平方向に微小な長さ x だけ進むとき, 弦を伝わる波の速さvv=ア と表される。 この間に、波の右端付近では, 長さ x の部分(以下ではこの部分をXとする) が波の進行 とともにわずかに持ち上げられる (変位する)。 微小時間 At の間, X は張力のみを受けて, 運動するとみなせる。 X の鉛直方向の運動を初速度 0, 加速度の大きさαの等加速度運動と 近似すると,Xの重心の変位の大きさ 1/24y , Ata のみを用いて, 1/1/24y=イ]と 表される。さらに, 長さ x の部分 X が受ける力の鉛直成分は,張力 T の鉛直成分 Tyの みであるから,運動方程式より,aは,p, Ax および T, を用いてa=ウと表される。 加えて,弦が水平となす角度が十分小さいとき, Ty=x Ayr と書くことができるので,”は To のみを使ってv= エ と表すことができる。 of T Ay Ax V Ty =acos(ax+b)(a,b: 定数) 図1 4x 4y T T

回答募集中 回答数: 0