学年

教科

質問の種類

物理 高校生

重要問題集 物理 71 問題を解く上では必要がないのかもしれませんが、どうしても初期状態でのピストンにかかる力のつり合いが気になります。 自分で立てた式では、 P0S=M0g+P0S となってしまい、M0が0になってしまいます。 そもそも大気圧がかかる面積... 続きを読む

(火) 54 ⑨ 気体分子の運動と状態変化 必解 71. 〈気体の状態変化と熱効率〉 熱機関を利用して上昇, 下降するエレベータの 物体 M [kg] 熱効率を求めよう。 図1のように大気中で鉛直にピストン Mo[kg]- 立てられている底面積 S〔m²〕 の円柱形のシリン ダーに質量 Mo [kg] のなめらかに動くピストンが ついており,中に単原子分子理想気体が封じこめ られている。 図1のようにピストンの可動範囲は ho 〔m〕 からん 〔m〕 までである。 重力加速度の大き さを g[m/s] とする。 初期状態は,気体の温度が外部の温度と同じ h[m] ho〔m〕 初期状態単原子分子 状態 2 理想気体 図 1 To [K], 気体の圧力が大気圧と同じPo [Pa〕, ピストンの高さがん 〔m〕 である。 まずビ ストンの上に質量 M [kg] の物体を乗せ、シリンダー内の気体に熱を与える。 しばらく静止 し続けた後, ピストンが動きだした。 この動きだしたときの状態を状態1とよぶ。 さらに熱し続けるとゆっくりとピストンは上昇し, 高さがん 〔m〕 に達した。 このときの状 態を状態2とよぶ。 状態2になった瞬間に物体をピストンから降ろすとともに熱を与えるの をやめた。ピストンはしばらく静止し続けたが,やがてゆっくりと下降し, 高さがん [m] となったところで静止した。 さらに時間がたつとシリンダー内の気体の温度がT [K] にな ったところで初期状態にもどり,この熱機関はサイクルをなす。 (1)状態1のシリンダー内の気体の温度を求めよ。 (2) 初期状態から状態までに気体に与えられた熱量を求めよ。 [Pa] (3)状態2のシリンダー内の気体の温度を求めよ。 (4)状態1から状態2までに気体に与えられた熱量を求めよ。 (5) 気体の体積をVとするとき,このサイクルのか-V図を図2にかけ。 (6)このサイクルで熱機関が外にした仕事を求めよ。 (7) このサイクルの熱効率を求めよ。 図2 V[m³] (8)M=2Mo, Mo- PoS g h=2h の場合の熱効率の値を求めよ。 [12 弘前大〕 B 応用問題 ◇72. 〈半透膜で仕切られた2種類の気体〉 思考) 図1のようにピストンのついた 2 領域 1

未解決 回答数: 0
物理 高校生

高校物理力学です。なぜBにFは働いていないのですか?Bに直接Fが接していないからですか?

4-2 運動方程式の立てかた 115 質量 m F A 3 BINDING PLA-CLIP ref: 3255-464 4th 〈問4-2 滑らかな床の上に、質量が無視できる糸でつながれた質量mの物体Aと質量3 の物体Bがあり、右ページ上図のように, 物体Aを力Fで引っ張っている。物体A Bの加速度をα 糸の張力をTとして、 以下の問いに答えよ。 ただし、右向きを ステ 正とする。 41 物体Aに関する運動方程式を立てよ。 2) 物体Bに関する運動方程式を立てよ。 3)αをFとm で表せ。 2物体の運動を扱う問題です。 まずは着目する物体をAとして, 運動方程式を立て、 その後、 着目する物体をBに変えましょう。 解きかた (1) まず、物体Aにはたらく力を図示しましょう。 問4-2 a 質量 3m B 物体Aにはたらくカ 物体の加 物体Aにはたらく力は、重力,垂直抗力, F,張力Tですね。 運動方向の力は,力Fと張力Tですから, 右向きを正とするとき 物体Aの運動方程式: F-T = ma・・・ 注目する物体が 受ける力」のみで判断 正 T F (2) 物体Bにはたらく力は、重力、垂直抗力, 張力Tですから,同様に考えて 物体Bの運動方程式: T=3ma・・・ 答 NAmg ここで注目すべきは,物体Bの運動方程式には,力Fが出てきていないことです。 物体Aが力Fで引っ張られているからといって, 物体Bも力Fで引っ張られてい るわけではなく、物体Bはあくまで張力Tで引っ張られているのです。 「物体Bも力Fで引っ張られてそうだな」という思い込みは禁物です。 着目した物体にはたらく力を1つ1つ図示し, それをもとに運動方程式を立てる, これを徹底してくださいね。 人 にする 同 <解きかた (3) 立てた運動方程式を見ると, αをFとで表すには、Tを消す必要があり ます。 そこで、2つの運動方程式をそれぞれ足し合わせると 物体B にはたらく 正 NB T F=4ma F これより a= 4m では,もう一問やってみましょう。 この問題で、 着目する物体を決める重要性がわかったのではないでしょうか。 D = 1-7 3mg 物体Bに力がはたらいていると 思った人は要注意じゃ はたらく力を図示するステップを踏めば、 間違いは減るぞい W!! Aは糸からも 引っ張られておるぞ 4 物体Bには Fははたらいて いないんだね

回答募集中 回答数: 0
物理 高校生

問題(エ)で2倍になる理由がわかりません。点Pは初めて極大になるから(L1-L2)=mλから一倍になるのではないのでしょうか?説明お願いします。

問5 次の文章中の空欄 物理 エ に入れる語と数値の組合せとして最 も適当なものを後の①~⑥のうちから一つ選べ。 6 図6のように、振幅, 波長の等しい音を同位相で発している小さいスピー カー A, B がある。 Bの位置を通り, A, B を結ぶ直線に対して垂直な直線 上で, Bから離れる向きにゆっくりと進みながら音の大きさを観測した。 た だし,各スピーカーからの音の大きさは距離によって変化しないものとし, 反射音などはないものとする。 また, A, B からの音が強め合うときに,観 測される音は極大になるものとする。 A P 図 6 A Bの位置から進むと, 点Pではじめて音の大きさが極大となり,さらに 進むと,点Qで2回目に音の大きさが極大となったが,その後, 進み続け ても音の大きさは極大にならなかった。 この間, 音を観測する点でのAか らの距離とBからの距離の差の大きさは, Bから離れるにしたがって ウ なる。また、点PでのAからの距離とBからの距離の差の大きさ は, A, B が発する音の波長の I 倍である。なお, 図6 中の BP, BQ の長さは正しいとは限らない。 610 ウ H ① 小さく 1 小さく 2 小さく 3 大きく 1 (5 大きく 2 (6 大きく. 3 -7- ばれた図形の面 40.

回答募集中 回答数: 0
物理 高校生

(3)の解説の変化量のところがわからないです。変化量はどうやって出しているのですか

したがって, 比熱の比は、 例題 S 混合気体 ~ Sast 9912 (5)融解曲 25 29 容積 2.0L, 4.0Lの容器 A, Bが,図のよ うに連結されている。 容器Aにはメタン, 容 器Bには酸素を入れて,ある温度にすると, 圧力はそれぞれ3.0×105 Pa, 6.0×105 Pa だった。コックを開けて気体を混合し、点火 して完全に反応させた後, 元の温度に戻した。 連結管やコック,および, 生じる水 の体積や、水蒸気の蒸気圧は無視してよい。 分子量 CH4=16.0,O2=32.0 点火装置 容器B A 20 想気 (a) f 2.0L 4.0L コック (b) 2 の の (c)】 (1) 反応前の混合気体中のメタンの分圧は何 Paか。 (d) (2) 反応前の容器内の全圧は何Paか。 (3) 反応後の容器内の全圧は何Paか。 KeyPoint 点火前後で温度一定: メタンと酸素のそれぞれにボイルの法則が成立する。 同温同体積 : 圧力比は物質量比に等しい。 ●センサー ●温度一定より, ボイル の法則 piVi=P2V2 ●全圧=分圧の和 ●同一容器内の気体の圧 力比は物質量比に等し い。 →反応による変化量を 圧力で示す。 重要 (1) C 解法 (1) (2) 気体についてボイルの法則が成立する。 混合 後の各気体の分圧を PCH4, Po2 とすると, 混合気体の体積は 6.0Lなので, (2 CH4 : 3.0×10 Pa×2.0L=PcH.〔Pa〕×6.0L PcH=1.0×105 Pa O2 :6.0×10 Pa×4.0L=po〔Pa〕×6.0L Po2=4.0×10 Pa 全圧は,1.0×105 Pa+4.0×10°Pa=5.0×10 Pa (3) 反応前後の物質の量的関係を分圧で考える。 08. CH4 +202 CO2 +2H2O (s) 反応前 〔Pa〕 1.0×105 4.0×100005 変化量〔Pa〕 -1.0×10 -2.0×105 反応後 〔Pa〕 0 2.0×105 1.0×105(無視) 反応後の全圧は、2.0×10 Pa+1.0×105 Pa=3.0×10 Pa 解答 (1)1.0×10 Pa (2)5.0×10 Pa (3)3.0×105 Pa [mL〕| | ル・シャルルの法則 重要

回答募集中 回答数: 0
物理 高校生

(6)の高温熱源、低温熱源がどうのこうの というのがわかりません。

容器内の気体の圧力 P, 〔Pa] を求めよ。 3) 容器内の気体の温度 T [K] を求めよ。 この変化における容器内の気体の圧力P [Pa〕 と体積V[m²] の関係を表すグラフをかけ。 ただし, P を用いてい 15) この変化で気体が外部にした仕事〔J〕 を求めよ。 (6) この変化で気体が温度調節器から受け取った熱量Q〔J〕を求め 68.〈気体の状態変化と熱効率〉 (6) [A] 理想気体では物質量が同じであれば, 内部エネルギーは温度 で決まる量であり, 圧力や体積が異なっていても温度の等しい状 態の内部エネルギーは同一である。 このことから, 1molの理想 気体に対するか-V図(図1)に示す状態a (温度 T [K]) から状態 b (温度 T'[K]) への内部エネルギーの変化 4Uab 〔J〕 は,定積モ ル比熱Cv 〔J/(mol・K)] を用いて AUab=Cv(T-T) [9] 気体分子の運動と状態変化 51 68 p 0 数研出版 と表すことができる。 (1) 図1に示す状態 a, b とは別の状態 c (状態aと同じ体積をもち,状態bと同じ温度で ある状態)を考えることで ① 式を導け。 1/3 [B] 理想気体1mol の状態を図2のようにA→B→C→Aと変化 させる。 それぞれの状態変化の過程では, A B 外部との間で熱の出入りがないものとする B→C: 圧力を一定に保つ C→A:体積を一定に保つ ように変化させる。 状態 A, B, Cの圧力, 体積, 温度をそれぞれ (p₁ (Pa), V₁ (m³), TA (K)), (P2 (Pa), V₂ [m³), TB (K)), 〔Pa], V1 [m²], Tc 〔K〕) とする。 また, 定積モル比熱をCv 〔J/(mol・K)] 定圧モル比熱 Cp を Cp [J/(mol・K)],比熱比を y = v 気体定数を R [J/ (mol・K)] で表す。 p P₁ P₂ 図 1 0 C 等温線 V₁ 図2 B (2) 過程A→Bで気体が外部からされる仕事 WAB 〔J〕 を ① 式を用いて求め, その答えを Cv. Cp, Ta, TB, Tc の中から適するものを用いて表せ。 (3) 過程B→Cで気体が得る熱量 QBc 〔J〕 と, 過程C→Aで気体が得る熱量 Qca 〔J〕 を Cv, Cp, Ta, TB, Tc の中から適するものを用いて表せ。 V₂ V (4) 過程B→C→Aで,気体が外部からされる仕事 WBCA 〔J〕 を求めよ。 これと前問の答え とをあわせて考えると, 定積モル比熱 Cv, 定圧モル比熱 C, 気体定数Rとの間の関係 式を見出すことができる。 その関係式を導出せよ。 仕事 WBCA は、 Cv, R, Ta, Ts, Te の中から適するものを用いて表せ。 (5) 図2に示すサイクルの熱効率e を, y, pi Y2 を用いて表せ。 Pa' Vi (6) 図2のサイクルを逆向きに,すなわちA→C→B→Aの順に変化させると、 どのような はたらきをする機関となるか。 これが熱力学第二法則に反しないための条件を含めて、 100字以内で述べよ。 [22 岐阜大]

回答募集中 回答数: 0
物理 高校生

2枚目の(ウ)に書かれている「転倒し始める時は〜」のところが分かりません。なぜそれが成り立つのでしょうか?

例題1 剛体のつりあい ① 次の文中の 図のように、直方体の一様な物体Aが, 水平と45°の傾斜をもつ地盤Bの上に,質 量の無視できるロープCによって取りつ けられた構造物がある。 物体Aと地盤B とは、接触しているだけである。 をそれぞれ記入せよ。 に適する数値(負でない整数) A 4m 考え方の キホン M145° mg45 2m C B J 水平面 物体Aの質量 : m=1.0×10℃〔kg〕, 重力 加速度の大きさ:g=10[m/s'], 物体Aと地盤Bとの間の静止摩擦係 数および動摩擦係数 : μ=1/3,√2の値: 1.4とし, ロープCは十分強く, 伸び縮みしないものとする。 × 10°Nであり、地 × 10°N である。 (1) 静止しているとき, ロープCの張力は (ア) 盤Bが物体Aに作用する抗力の大きさは (イ)[ (2) 地震によって、 次第に強くなる上下動 (鉛直方向の動き)が起こ り,ある加速度が物体Aにはたらいたら, 物体Aが転倒 (物体Aが 地盤Bに対して,すべり離れなどの動きを起こし、回転して倒れ る状態)を起こし始めた。 その加速度の大きさは (ウ) m/s' であ り、ロープCの張力は (エ)[ |×10°Nである。 (3) 地震によって、 次第に強くなる水平動が起こり,ある加速度が 物体Aにはたらいたら, 物体Aが転倒 ((2)参照) を起こし始めた。 その加速度の大きさは (オ) m/s' であり, ロープCの張力は (カ) × 10°である。 〔東京理科大・改〕 力学において最も重要なことは, 力を正しく見つけることである。 そして力がわかれば,それらを互いに垂直な方向に分解し、力のつ りあいの式を2つつくる。 次に,適当な点のまわりの力のモーメントのつりあい の式をつくる。あとは, 以上の3つの連立方程式を解くだけである。なお, 静止 摩擦力はつねに最大静止摩擦力が働いているとは限らないので, はじめからその 値を IN とおいてはいけない。 まず, 未知数として文字で表し (例えばF),つ りあいの式を解いてFの値を求めてから, FUN の条件を課せばよい。また, 力のモーメントのつりあいの式は、任意の点のまわりのモーメントで考えてよい が、なるべく計算が簡単になるような点を選べばよい。 すなわち, ある力の作用 線上の点を選ぶと, その力のモーメントが0になるので計算が楽である。 1カ学

回答募集中 回答数: 0