学年

教科

質問の種類

物理 高校生

この質問に答えて!

4 (1)Ua= Cr(p-pal) Vo + Cop(V-Va) R (5) 圧力: 温度: -p (V-Va) U₁ = Capo (V - V₁) + Cv (p-po) V [考え方 R - po (V - Vo) から熱が 変化と (2) 考え方参照 考え方 (1) 気体の内部エネルギーの増加は、外 から与えられた熱量と仕事の和に等しい。 圧力po. 体積Voのときの温度をTとし,p, Vのときの温度をTとする。 また,過程Aで, P.Voのときの温度をT,過程で、po. Vのときの温度をT』 とすれば、次の4つの 状態方程式が成り立つ。 PoVo=RTo PV=RT pV = RT poV = RTs)..... 過程Aでの内部エネルギー増加U』は、 Us=Cr(Ta-To) + C, (T-TA) -p(V - Vo) PV の関係が y= である。 はじめの の圧力〔 1x ゆえに、 ① P = ここで, logio ~ ② ②式に①式から得られる To TA, T を代入 すると, Cr(p-po) Vo +Cpp(V-Vo) U₁ = R さらに, -0.0 -p (V - Vo) 過程Bでの内部エネルギーの増加 UB は, UB = C, (Ts-To-po (V-Vo) + Cv (T - TB) なので、 log10 対数法則 [10] ③れば せ ③式に①式から得られる To T, T を代入の?p= すると, UB = Cppo (V-Vo) + Cr(p-po)V R -po(V-Vo) (2)過程A, B のどちらでも,最初と最後の状 態は同じなので, UA = UB となる。 よって、 ② ③式を代入すると, Cp(p-po) (V-Vo)-Cr(p-po)(V-Vo) となり, R =(p-po) (V-Vo) Cp-Cv=R 240 定期テスト予想問題の解答 すなわち 次に ヤルルの 1 > 273 ゆえに、 (補足) を求める y=1 と表す。 対数関数 k loga

未解決 回答数: 0
物理 高校生

物理の力学の問題です。 注のcの意味がわかりません。 わかる方教えて欲しいです🙇‍♀️

咲いているので,斜画力向には弾性力のはかに重力の成分もはたらく。 (1) ばね定数k2のばねの伸びがαのとき, k のばねの伸びをとする。おもり の大きさを無視して考えると,図より (lo+a)+(lo+b)=L よって b=L-2l-a k₁ k2 mmmm mmmm fi f2 このとき, k, k2 のばねの弾性力の大 きさをそれぞれ1, 2 とすると, フッ クの法則 (lo+b) (lo+a) 外カ =k1b=ki (L-2l-a), fz=kza おもりにはたらく力のつりあいから f1=f2 f2' 200 A (lo+b+x) (lo+a-x)+ ゆえに a=- よってki(L-lo-akza k₁ k₁+k₂ ・① ※A -(L-210) 次に,おもりを右向きにxだけ動かしたとするB (右向きを正の向きと する)。このとき, k, k2 のばねの伸びはそれぞれ k1 : 6+x=L-2l-a+x, k2: a-x よって, ばねの弾性力の大きさをそれぞれ f. ' とすると fi'=k (b+x)=k (L-2l-a+x) fz'=kz(a-x) おもりにはたらく2つの弾性力f', f' の合力Fは, ①式を用いて整理すると F=fz-fi'=kz(a-x) -k (L-2l-α+x) =-(k+k2)x+kza-k(L-2L-α)=-(ki+k2) xC ←A別解 全体の伸び L-2l をばね定数k, k2 の 逆比に分配すれば k₁ a= -(L-21) k₁+k₂ ←B おもりを移動させる のに外力が必要である。 Cx>0 (右へ移動)の とき F<0 (左向き), x<0 (左へ移動) のとき F>0(右 向き)のように,変位 xの向 きと弾性力の合力Fの向きは, 常に反対向きとなる。 また, 外力と力Fはつりあいの関 係にあるから f=(ki+kz)x なお, kk2 はばね 1,2を 並列 (直列ではない)につない だときの合成ばね定数である。

解決済み 回答数: 1
物理 高校生

赤線のところがわからないので教えてほしいです

と を 60 Chapter 2 力のつり合い 〈問2-3> 右ページ上図のように、2本の糸がそれぞれ角度45°で質量mのおもりを吊るし ている。このときの2本の糸の張力の大きさをそれぞれ求めよ。 ただし、 速度の大きさをgとする。 <解きかた この場合は, ませんね。 〈問2-1のように単純に力のつり合いの式を立てることがで 問2-3 糸 1 まずおもりにはたらく力を図示するという手順は同じです。 そこで力を鉛直方向と水平方向に分解してつり合いの式を立てるわけです 45° 45° ページ真ん中の図のようになります。 そして、張力を鉛直方向と水平方向に分解して、そのそれぞれについて 力のつり合いの式を立てると |求める張力の大きさをそれぞれT1 T2 とすると, おもりにはたらく力は右 物体にはたらく力を分解すると・・・ T₁sin 45° T2sin 45° T2 T 鉛直方向: T sin45° + T2 sin45° = mg ...... D 水平方向: T cos45°=Tzcos45° ・・・・・・② | sin45°=cos45°=- ですから、①②式を解いて v2 mg T₁ = T₂ = √2 ・・・答 このように、力のつり合いを考えるうえで、力を分解する方法はよく使われます。 この例のように、鉛直と水平に分解するのがいちばんオーソドックスですが, 他の分解のしかたでも問題は解けます。 どのように分解すれば,いちばんきれいに解けるかを意識するようにしましょう。 45° 45° さ Ticos 45° T2cos 45° 角をなす力Fの 水平 鉛直成分は Fcos 0, Fsin0に なるのじゃ 糸2 2-4 の分解 61 ここを理解したら どんぐりを 食べようっと 02 mgの分解成分 F F sin 0 0 F cos 0 000

未解決 回答数: 0