学年

教科

質問の種類

物理 高校生

物理基礎の問題です! 類題の(4)を教えてほしいです!! よろしくお願いします🙇🏻‍♀️՞

例題① 電熱線による発熱 1kWh=10Wh=3.6×10J 3.6×10³ J ある長さの電熱線に100Vの電圧をかけると, 消費電力が400W であった。 次の問いに有効数字2桁で答えよ。 ただし, 電熱線の単位長さあたりの抵抗値 は変わらないものとする。 (1) 電熱線には何Aの電流が流れるか。 (3) (2)電熱線の抵抗値は何Ωか。 かかるか。 ただし, 電熱線の発熱量の30%は周りに逃げるものとし, 水の この電熱線を用いて, 16℃の水300gをあたためて100℃にするには何s 比熱は 4.2J/ (g・K) とする。 Gato 指針 (3) 水が得た熱量は, 電熱線で発生したジュール熱の70%に等しい。 解 (1) 電熱線に流れる電流をI [A] とすると,「P=VI」より、 400 W 400W =100 VXI よって, I= p.199式(7) =4.0A 100V p.192式(3) (2) 電熱線の抵抗値を R [Ω] とすると, オームの法則 「V=RI」 より (3)かかる時間を [s] とすると,「Q=Pt」 と 「Q=mcAT」 より, 100V よって, R= 100V=R×4.0A =25Ω 4.0 A p.125式(3) よって, t=3.78×10°s≒3.8×10's 84- p.199式(8) 400Wxtx0.70=300g×4.2J/(g・K)×(100-16) K 類題1 例題①の電熱線を、 元の80%の長さに切って, 100Vの電圧をかけた。次の 問いに有効数字2桁で答えよ。 (1) 電熱線の抵抗値は何Ωになるか。 (2) 電熱線には何Aの電流が流れるか。 (3)このときの電熱線の消費電力は何Wになるか。 (4) 例題1の(3)と同じようにして水をあたためたとき, かかる時間は元の何倍か。 20

解決済み 回答数: 1
物理 高校生

この問題の4番について質問です。振動数はおもりの重さによっては変わらないとあるのですが,なぜですか? おもりの数が多いほど,弦が張ることになるので,音が高くなると思ってました。(ギターみたいな感じで)

(3) Hz である。 また, a=35cm をそのままにし, おもりを4倍に増やし たとき, 弦は共振しなくなった。 弦を再び共振させるには,Bを 少なくとも (4) cm 右に移動しなければならない。 64 弦の共振 全体の長さが120cm 質量 1.8g の弦の右端に滑車を通して質量 6 kgのおもりをつるし,振動源Sによって弦を振動させる。 この弦は, コマBを動かすことにより任意の一点を固定できる。 弦の張力はどこ も同じで,振動する AB間の距離をα, 重力加速度を10m/s2とする。 問1 コマBを適当に動かすと, a= 30cmで弦が共振する。 さらにB を右に移動していくと, a=35cm で再び弦が共振する。 したがっ て,弦を伝わる横波の波長は (1) cmであり,このときのAB 間の腹の数は (2) 1個である。 またSの振動数は (1) 振動数 fと波の速さが変わっていないの で、波長も変わっていない。 Aが節で今こ とに節があるから, Aから30cmの範囲の定 常波の様子は同じこと。 そこで,Bを右へ だけ移せば再び共振する。よって .. 1 = 10 cm 5cm ごとに腹が1つずつあるから 35÷5=7個 B =35-30 2 2 2 (2) 2 (3)密度は p = 1.8×10-3 120×10-2 B< [kg] と [m〕 を - = 1.5×10-3 kg/m 用いること v = mg P 6 × 10 V1.5×10-3=200m/s 2 もとの弦と同じ材質 同じ長さで, 直径が2倍の弦に張り替え て, αを30cmにし, おもりの質量を6kgに戻す。 このとき弦は 共振し, AB間の腹の数は (5) 個となる。 また, AB間の腹の 数を3個とするには, Sの振動数を (6) 200 v=fa より - f === 10 × 10-2 = 2000Hz (4) はじめはVP Img =fx.......① Hz とすればよい。 mを4倍にしたときの波長を とすると,fは< ①を見て,m を4 倍にすると A B 変わっていないから V p 4mg =fv.......② 2倍になると即断 したい。 S 中にス ② より 2= =24=21=20cm ① 1 (上智大) ・B' Level (1)~(4)★ (5),(6)★ Point & Hint 隔は (1) (2) 弦が共振するのは, 両端が節となる定常波ができるとき。 節と節の間 2 だから、弦の長さが1の整数倍に等しいとき,共振が起こる。 弦の長さが4=10cmの整数倍のとき共振するから、35cmより大き い次の値としては 40cm。よって,5cm 動かせばよい。 A 2 (5)直径を2倍にすると, 断面積が4倍になる から、密度も4倍になる。 波長を入とす ①からを4倍にす ③れば入は1/2倍と即 mg=fie ......③ 断できる。 ると V 40 この問題のような状況では,Sはおもりの重力 mg に より1=4 ∴ A2 = =5cm 2 12= cm ごとにあるから 30÷2=12個 は v [m/s] はv= (3) 弦の張力をS〔N〕, 線密度をp 〔kg/m〕 とすると, 弦を伝わる横波の速さ 等しい。

解決済み 回答数: 1
物理 高校生

2個目のAで急に点Aがでてきた理由がわからないので教えてください

V 干渉 135 & 図を見ると山と山が重なっていない点にも強め合いの線が描かれていますね。 強め合いの位置というのはいつも山と山が重なってじっとしているわけでは ないんだよ。時間を追ってみると谷と谷が重なることもあり、 振幅2Aでバタ バタ激しく動いている点なんだ。 右の図で細い線は少し時間がたったときの 波面。 山の重なりはP′へ移っているね。 そ のうちPには谷と谷がさしかかることにな コしてるわけだ。 る。強め合いの線に沿って見ていくとデコボ 強め合いの線 P 山 S2を中心と して広がる 一方、弱め合いの線上での変位はどこも 0 で水面はじっとしているんだよ。 Sを中心と して広がる 波紋が広がるイメージ をもって見てみよう Q 条件式の方は考えれば考えるほど分からな くなります。 確かに=5,2=3のような位置では,波源と同じ変位だか ら,波源が山のとき, 山と山が重なり合います。 でも,=53入,2=3.3 (や はり差は21で強め合い)となると,いったいどう説明できるんですか? まず, 波源 S1, S2が山を出したときを考えよう。 この2つの山がやがて点Pで出合うわけではない ね。Pに近いS2 から出た山の方が先にPに着いて しまうからね。 S2 から出た山が出合う相手, それは SとPを結ぶ線上でPA=PS2となる点 A にいる 波だ。 つまり点 A に山がいることが強め合う条件だ。 SとAが同時に山となるためには SA=m入 ほら、 SAこそ じゃないか。 一方, 弱め合いは波源が山のときAに谷がいれば よい。 S2 の山とAの谷がやがてPで出合って打ち 消すことになる。 S, が山, A が谷となるためには 入 山 S1 強め合い P S2 これらがPで重なる 弱め合い P 山 S.A が 1/12 あるいは 123+m入であればいいね。 S1 S₂ Q なるほど。すると, 波源が逆位相のときは,Sが山を出したとき S2は谷を 出すと………そうか! 距離差=miならAは山でS2 からの谷と打ち消し合 うし,距離差= (m+1/2)入ならAは谷で強め合うというわけですね。

回答募集中 回答数: 0
物理 高校生

①、②まではわかるんですけど答えがなぜそうなるのかわからないです。

60 60 Chapter 2 力のつり合い 問2-3 のおもりを ている。このときの2本の糸の張力の大きさをそれぞれ求めよ。 ただし、 速度の大きさを とする。 解きかた この場合は、 ませんね。 問2-1 のように単純に力のつり合いの式を立てることが そこで、力を鉛直方向と水平方向に分解してつり合いの式を立てるわけです 問2-3 糸 1 45゜ 45° 2-4 力の解 61 糸2 22 まずおもりにはたらく力を図示するという手順は同じです。 ページ真ん中の図のようになります。 そして、張力を鉛直方向と水平方向に分解して、そのそれぞれについて 力のつり合いの式を立てると |求める張力の大きさをそれぞれ T1 T2 とすると, おもりにはたらく力はも 物体にはたらく力を分解すると・・・ Tsin 45° T2sin 45° T2 T₁ ここを理解したら どんぐりを 食べようっと 鉛直方向: T sin45°+T2 sin45°=mg ...... ① 回 水平方向: T cos45°=T2 cos45° ......② = √2 sin45°cos45 ですから,①,②式を解いて mg T₁ = T₂ =√2 このように、力のつり合いを考えるうえで,力を分解する方法はよく使われます。 この例のように,鉛直と水平に分解するのがいちばんオーソドックスですが 他の分解のしかたでも問題は解けます。 どのように分解すれば、いちばんきれいに解けるかを意識するようにしましょう。 お 45° Ticos 45° よって ・ 45° T2 cos 45° mg 力の分解成分 F sin 0 角をなす力Fの 水平 鉛直成分は Fcos 0, Fsin 0に なるのじゃ B

解決済み 回答数: 1
物理 高校生

この質問に答えて。問題はコメントにある。

4 (1)Ua= Cr(p-pal) Vo + Cop(V-Va) R (5) 圧力: 温度: -p (V-Va) U₁ = Capo (V - V₁) + Cv (p-po) V [考え方 R - po (V - Vo) から熱が 変化と (2) 考え方参照 考え方 (1) 気体の内部エネルギーの増加は、外 から与えられた熱量と仕事の和に等しい。 圧力po. 体積Voのときの温度をTとし,p, Vのときの温度をTとする。 また,過程Aで, P.Voのときの温度をT,過程で、po. Vのときの温度をT』 とすれば、次の4つの 状態方程式が成り立つ。 PoVo=RTo PV=RT pV = RT poV = RTs)..... 過程Aでの内部エネルギー増加U』は、 Us=Cr(Ta-To) + C, (T-TA) -p(V - Vo) PV の関係が y= である。 はじめの の圧力〔 1x ゆえに、 ① P = ここで, logio ~ ② ②式に①式から得られる To TA, T を代入 すると, Cr(p-po) Vo +Cpp(V-Vo) U₁ = R さらに, -0.0 -p (V - Vo) 過程Bでの内部エネルギーの増加 UB は, UB = C, (Ts-To-po (V-Vo) + Cv (T - TB) なので、 log10 対数法則 [10] ③れば せ ③式に①式から得られる To T, T を代入の?p= すると, UB = Cppo (V-Vo) + Cr(p-po)V R -po(V-Vo) (2)過程A, B のどちらでも,最初と最後の状 態は同じなので, UA = UB となる。 よって、 ② ③式を代入すると, Cp(p-po) (V-Vo)-Cr(p-po)(V-Vo) となり, R =(p-po) (V-Vo) Cp-Cv=R 240 定期テスト予想問題の解答 すなわち 次に ヤルルの 1 > 273 ゆえに、 (補足) を求める y=1 と表す。 対数関数 k loga

解決済み 回答数: 2