学年

教科

質問の種類

物理 高校生

問4のウと問5はどのように求めればいいんですか?💦

ここで, A についての運動方程式を利用して, A.と床面との間の動摩擦係数μを求め よう。 図3のように、水平右向きを正としてx軸をとり、 床面上のx=0mの位置に置か れたAに水平右向きに一定の大きさの力を加え続けたところ, 静止していたAはx軸に 沿って床面上を水平右向きに運動した。 Aが動きはじめた時刻を t=0sとして, Aが x=0mからx=5mまでの1mごとの位置を通過する時刻t を測定した。その結果を図4 のようなxに対するtのグラフ (-xグラフ) に表した。 USH 床面 Am t (s) t 5 4 3 2 1H %8 1 2 図 3 3 4 図 4 5 x (m) 5 x (m) 問4 次の文章中の空欄 えよ。 図4の縦軸と横軸を入れ替えたグラフは, 等加速度直線運動のxt グラフを表す放 物線のように見える。 初速度の大きさが 0m/s の等加速度直線運動ではがxに比 例するので, ピーxグラフを作成したところ、図5のような直線のグラフになった。 こ のことから, Aは等加速度直線運動をしたことがわかった。 2.5 ここで、図5の直線の傾きを求めると, 傾きは 用いて, A の加速度の大きさを求めると, a= t² (s²) 30 201 10 ウに入れる数値をそれぞれ有効数字2桁で答 1 イ s/m² となる。この傾きを ウ m/s^² となる。 2 3 4 15 x (m) 図5 次に, A に水平右向きに加えた力の大きさを 1.00NとしてAの加速度の大きさを求め ると, 0.12m/s' が得られた。 ただし、 Aの質量を0.50kg, 重力加速度の大きさを 9.8m/s² とする。 問5 このとき, A と床面との間の動摩擦係数μはいくらか。 有効数字2桁で答えよ。

回答募集中 回答数: 0
物理 高校生

物理、ばね、つり合い この問題の問5についてです。模範解答では、つり合いの式「mg+k(a+x)-N=0」から考えて導いていたのですが、私は物体A+B(2mg)とばね定数(k=mg/a)がつり合うことを考えて「F=kx」より「2mg=k・b」という式で答えを導きました。答え... 続きを読む

con 付け, ばねを鉛直に立てて, B を水平な床面上に置いたところ, ばねが自然の長 図5(a)のように, 軽いつるまきばねの両端に同じ質量mの物体A, B を取り さより だけ縮んだ状態でAが静止した。 B 図5(b)のように, A をつり合いの位置からさらにaだけ押し下げて静かには なすと,Bが床面に静止した状態でAは鉛直方向で単振動を行った。 重力加速度 の大きさをgとする。 kazmy 自然の長さ A m Bm 問3 次の文章の空欄 それぞれの直後の { 3 4 ばね 体Aの単振動の周期は つり合いの位置 床面 このばねのばね定数は 3 4 . my (hea) mg a 図5 mg ① 2a 3 }で囲んだ選択肢のうちから一つずつ選べ。 ② (3 1 2π 4 に入れる式として最も適当なものを, ② 2 mg a 2mg a A 2g a 9 2a Ng m ③2. m (b) a である。 したがって 物 kimg a Taza Foz となる。 T = 2h ^. kw. 厚 鹿 ひこ 問4 Aが図5(a)のつり合いの位置を通過するときの速さを表す式として正しい 5mg 5 ものを、次の①~⑤のうちから一つ選べ。 = Jag mad ① vga 2 0 √2a ga 3 my = my ² a mgenue 3 Mitwir acro ² F 問5 次にAを図5(a)のつり合いの位置から押し下げる距離を6にして静かに はなした。このとき,Aの運動中にBが床面から離れないためには,b はい くら以下でなければならないか。 最も適当なものを、次の①~⑥のうちか ら一つ選べ。 b≦ 6 a zyw² n² ③ ga 2 4 √ga 2ning=nox(base) begy 『 22 5 √3ga zazlatyu 3 √3a 42a ⑤ 15 2 6⑥ 3a

回答募集中 回答数: 0
物理 高校生

⑴、⑵わかりません💦 教えてくださいお願いします💦

次に, ワイヤーと定力装置を取り除き, 糸の一端を台車の右端に取り付け. 机の端に固 定した軽くてなめらかな滑車に通して、他端におもりを1個つるし, 台車を手で支えて全 体を静止させた。 つるしたおもりと同じおもりをさらに9個用意し、 次の実験 1 実験2 の方法で、糸につるすおもりの個数を増やしながら、台車を支える手を静かにはなした後 の糸につるすおもり全体にはたらく重力の大きさ(以後 おもり全体の重さという)と台 車の加速度の大きさの関係を調べる実験を行った。 おもり1個の質量をm, 台車の質量 を5m² とする。 ただし、台車と滑車の間の糸や記録タイマーと台車の間の記録テーブは常 に水平で、滑車とおもりの間の糸は常に鉛直であったとする。 また, 記録テープや糸の質 量、記録テーブにはたらく摩擦力、空気抵抗は無視でき, 糸は伸び縮みしないものとする。 実験1 図3のように, 台車に何もせずに、糸につるすおもりを1個から2個, 3個.... 10個と増やしていき, 糸につるしたおもり全体の重さと台車の加速度の大きさの 関係を調べた。 記録テーブ H 台車 57 記録タイマー 5mg おもり9個 a おもり8個 糸 図3 実験2 図4のように、台車に9個のおもりをのせ、糸につるすおもりを1個にして実験 を行った。 次に、図5のように、 台車にのせたおもりを糸の方へ1個ずつ移して、 糸につるすおもりを1個から2個 3個 ・・・ 10個と増やしていき, 糸につるした。 おもり全体の重さと台車の加速度の大きさの関係を調べた。 図4 滑車 図 5 T おもり 1個 (おもりを増やして ↓ a おもり1個 おもり 2個 (台車にのせたおもり を糸の方へ1個ずつ 移動させていく)

回答募集中 回答数: 0
物理 高校生

この2番の問題なぜ、eがマイナスになるんですか?ほかの問題でプラスになったりマイナスになったりしてわけがわかりません

(3) Step 1 解答編 p.246~247 陰極線 次の文の[ □に適当な語句を入れよ。 電極を封入したガラス管に低圧の気体を入れ,高電圧をかけて放電させる。 ③には,(1)物体によっ ②極の反対側のガラス管壁が蛍光を発する。 これは② コや磁界によって 体の圧力が数 kPa 程度であると、管内の気体が ① する。一方,10Pa以下の圧 力の放電管では, から出る ③がガラスに当たって生じるものである。 ④性) (2) ⑤ 電荷を運ぶ (3) ⑥ て遮られ、影ができる 曲げられる, などの性質がある。 トムソンは3③⑦を測定した。後に ③の正体は⑧の流れであることがわかった。 ② 電子に生じる加速度 右図のように間隔dの平行極板間に電 圧をかける。質量m/電気量-d(≪0)の電子を極板に平行 に入射したときの電子の加速度の大きさと向きを求めよ。 43 d D 3 電子の比電荷と加速度間隔が0.10m だけ離れた平行極板に, 2.0×10Vの電 e €₁ m をかけた。この極板間に置かれた電子 (比電荷 度の大きさは何m/s2 か。 + + + m, -e ? ミリカンの実験空気中に, 2枚の平行板電極を、上下に間隔dだけ離して水平に 置き,電圧Ⅴをかけた。この極板間に質量の電気量帯電した油滴を入れる と,油滴は一定の速させて上昇した。このときの力のつり合いの式を書け。ただし、 油滴が受ける空気の力は油滴の速さに比例し(比例定数k) 重力加速度の大き さをgとする。 64 V 3 3.5×10¹ m/s² ④ mg+kv-q d ⑥ 粒子性 (1), (4) 波動性 (2)(3) 268 第V部 原子分子の世界 D-0 ⑤ 光量子波長が 6.0×10mの光子1個のエネルギーと運動量の甘さを求めよ。 ただし, プランク定数を 6.6 × 10734 J's, 光速を3.0×10°m/s とする。 11,26 1/76×10 [C/kg]) に生じる無 Q ⑥ 粒子性と波動性 (1)光電効果 (2) ラウエ斑点 (3) ブラッグの条件 (4) コンプトン効 果は,光やX線の粒子性と波動性のどちらに関係が深いか。 8,16,23,24,25.26 答 ①①発光 ②陰 ③陰極線 ④直進 ⑤ 負 ⑥電界 ⑦比電荷 ⑧電子 ② eV md' =0 ⑦ 物質波速さ 3.0×10°m/sで運動している電子の物質波の波長は何mか。 ただい 電子の質量を9.1×10 -31 kg, プランク定数を6.6 x 10 J's とする。 Na 34 274 u 2.4×10-10m 3.3×10-19 J, 1.1×10-27kg・m/s 例題 93 右図の光 変えて実験 電効果が走 数をn (1) 金属木 (2) 波長 ギーの (3) 波長 UT 上向き 陰極線の粒- 光 eを用 SP 問 (1) 入 〔 が起こ の光子 に相当 (3) 「電 れなく のほ 電子 ネル り、 動エ が小 流は ( 光の粒 E=h_ 光電効 の運動 Ko, 光 仕事関 Ko=

回答募集中 回答数: 0
物理 高校生

(3)の問題 質量数とアボガドロ数を用いた計算のしかたがわかりません 僕のノートのように計算しては行けないのですか?

反応の前後で減少した量を GM とすると、 JM (反応) - 反応後の質量) AM= (26.9744+1,0087) -(23.9849+4.0015) =-3.3×10 u (2) (1) JMが負となったので、反応後の質量 leV=1.60×10-19Jなので, 4.92×10-13 1.60×10-19 指針 反応前後での質量の減少を⊿M とす ると, 4M2 のエネルギーが放出される。 (3) では, Uの原子数を求め, エネルギーを計算する。 (1) 反応前の質量の和は, 234.9935+1.0087=236.0022u 反応後の質量の和は, 139.8918+92.8930+3×1.0087=235.8109u =3.07 x 10°eV=3.07MeV 3.1 MeV のエネルギーが吸収された。 基本例題88 ウランの核分裂 ウランの原子核に中性子 in が衝突し, 次のような核分裂がおこった。 U÷n →→→→ ¹8Xe+Sr+3n 表には、各原子核と中性子の質量を示す。 1u=1.66×10-27kg, 真空中の光速を3.00×10°m/s, アボガドロ定数を6.02×1023/mol とする。 質量の減少は 236.0022-235.8109-0.1913 u (2) 反応によって減少した質量をkg に換算する。 AM = 0.1913×(1.66×10-27) = 3.175×10-28kg 基本問題 606,607,608,609 in 38Sr 1404 (1) この反応における質量の減少は何uか。 (2) Uの原子核1個あたりから放出されるエネルギーは何Jか。 (3) 1.00gのUがすべて核分裂をしたとき, 放出されるエネルギーは何Jか。 1.00 235 235T 1.0087 u 92.8930u 139.8918u 234.9935 u 放出されたエネルギーEは,E=⊿Mc² から . E=3.175×10-28 × ( 300×108) 2 = 2.857×10- ….. ① 2.86×10-1J (3) 1.00gの25Uの原子数は、質量数が235 な ので, x (6.02×1023) = 2.561×1021 求めるエネルギーE' は, ①の値から. E'=(2,857×10-1)×(2.561×1021) =7.316×10¹0 J 7.32×10¹0 J

回答募集中 回答数: 0