学年

教科

質問の種類

物理 高校生

静電気・保存則の問題です。 (5)の力学的エネルギー保存則の式の右辺について、Aはx軸の-方向に動いているのに-1/2mvA^2ではなく1/2mvA^2になるのかが分かりません。 教えてください。

AB間の距離が2rm[m]のときのAの逃さ v [m/s] を求めよ。 量m(kg]の粒子Aが最初, Bから十分離れた位置にあり,x軸上正の 方向に遊度 (m/s)で動いている。 クーロン定数を:N·m'/C°)と (4) AがBに最も近づいたときの, Aの速度u [m/s]を求めよ。ま その後AとBは互いに反発し遠さかる。十分に時間がたった後 1/静電気 +QIC)を帯びた質量 AM (kg)の粒子Bが r軸 上の点Pに静止している。 また。+q[C) を番びた賞 m,q M.Q Vo 河合計 B 11 静電気保存則 43 HCHEE P 島 A5判 (1) 無限遠点での位置エネルギーは U=g×0=0 で, AB間の距離がr の とき U=qr kQ と表されるから,力学的エネルギー保存則より 5) 量4に らmu+0= 0+. kqQ 2kqQ mv? Yo Yo = (2) 前問と同様に ら +0=;mu+ kqQ 2r。 mu。 し, 重力や粒子の大きさは無視できるものとする。 Tath カ学 mu*+mu? V。 リ= V2 良間 類出 浜島 A5判 (3) 加速度が最大となるのは, 静電気力が最大になると きで、AがBに最も近づいたときだから 登信 (1) AB間の距離の最小値 o [m] を求めよ。 加速度のこと は力に聞け! mVo 9Q kqQ 『max- mr 4kqQ mamax=k mu 次に、粒子Bが×軸上を自由に動ける場合について, (4) 最接近のときの相対速度は0で, AとBの速度 は等しくなるから,運動量保存則より (止まった な、AB間の距離 [m]を求めよ。 mb = mu+ Mu m m+M 。 物体系についての力学的エネルギー保存則より . u= mv わ学 名問 浜島 A5判 (岡山大) のAの速度(m/s)を求めよ。 mu=me+ kqQ -Mu*+ Y」 Bから見れば AはUターン 0. 上で求めたuを代入して Y= 2kqQ(m+ M) mMu? Level (1)~(3) ★ (4),(5)★ kqQ はAとB全体でつくり出したもので, (1), (2)では 位置エネルギーU= Bが固定されているためAだけで使えたのである。力学でいえば, AとBがばね で結ばれているときの弾性エネルギーの扱いに似ている。 Point & Hint カ学 (1(2) 力学的エネルギー保存則を用いる。 位置エネルギーUは U=qVと (5) Bの速度をUpとすると, 運動量保存則より muo= mua+ Mus …① 力学的エネルギー保存則より kQ V= からつくり出す。 らく 物理 河合 B6 2mu =mu+Mug ……② | 運動方程式 ma = F を思い出したい。 -mv? (3)加速度といえば、 (4)物体系に働く外力がないから…。最接近のとき, Bから見てAは一瞬止まる から…。 AB間の距離については, A·B 全体について(物体系について)カ学 的エネルギー保存則を用いる。 位置エネルギーの形は前半と変わらない。 (5) 2つの保存則の連立。 Aと Bは十分離れるので位置エネルギーは0としてよ 0.2よりUを消去すると m-M m+M U= Vの正負はmとMの大小関係で決まる。 解も出るが、Aは静電気力で減速されているので不適 (初めの状態に対応)。 なお,計算からは ひ、= w という 物理 い。 別解弾性衝突とみなしてもよい。反発係数 e=D1 だから VA-Us = -1× (v0-0) ③ のと3の連立で解くと早い。 河 htt E-r kp

未解決 回答数: 1
物理 高校生

至急お願いします!🙏 1枚目の写真の問題と2、3枚目の写真の問題、 どちらも赤ペンで囲った部分はつり合いの位置であるのに 1枚目:運動エネルギー、弾性力エネルギーがある  2枚目:エネルギー全てなし  となるのはなぜですか?💦

位置0とPでのおもりの運 動エネルギー,位置エネルギーは,表のようになる。 力学的エネルギー保存の法則を用いると, たりし 現在の PO k(x,+4)?·O 位置エネルギー(J m×P+mg×(-A)+- 位置0における力のつりあいの関係から、 運動エネ ルギー(J) 弾性力 2保存 kx。-mg=0 重力 X=ー mg …の ジェット 0| mu" Omgx0博 式のを整理し、式②を代入すると,. 点までモー る。このと メール 0ー0 (m/s) P m×0° mg×(-)k(+4)? ;m= 2 ゆ up おもりの位置エネル ギーは、重力、弾性力 の各位置エネルギー の和である。 式のを整理し、 ーmgA+kr+ なっている 式のを代入し。 び同じ高さ 負の仕事を m=ーmgA+kX XA- 14 ばね定数 98N/m の軽いばねを天井からつるし、その先端に質量2.0kgのお もりをつるした。ばねが自然の長さになる位置で静かに手をはなすと,おもりはつりあ いの位置0を中心に振動した。 (1)おもりが最下点に達したとき、 ばねの伸びは何m か。 (2) おもりが点0を通過するとき、その速さは何 m/s か。 一般に、 ギーはその それぞれ上 Plus 次の関係か 連結して運動する物体の力学的エネルギー 図のように、質量の異なる2つの物体A, Bを糸で連結し、 軽 くてなめらかに回転する定滑車に糸をかけて、物体を運動させ る。糸は、物体A, Bに同じ大きさの張力をおよぼし, Aに負、 Bに正の仕事をする。糸の張力は保存力ではないため、それぞ れの力学的エネルギーは保存されない。しかし, 物体AとBを 一体のものとみなすと, 糸の張力がA, Bにする仕事の和は0と なり、AとBの力学的エネルギーの和は保存される。 トカ学的二 糸の張力 A) 降 糸の張力 のB Bの重力 E(J…変 E(J)…変 式の意味 Aの重力 108 第I章エネルギー あり)) pl08 間4 k= 98 [Ym] O フリあいの位置を中じに振動 の 図へように自然長(A)~フリチいの位置と フリあいの伝置~最下(c)は同じ寝さ (U-0) 2.06) B (~中いに接動。とあったときには、 上下のふれやは同じ大ままです) *つりあいの位置(B)を推準面とする *A-B 間をXm,(B-C間む久レ) とすると A~C間は 2又 Cm] うりあいの 花き() C (r-o) BE通過する速立E ひとする Kez A U 0 2.0x9.8xx Bす) k A B 0 U BX20×び 2g2 42 -2x196x 0 +x98x2 0 C 2.0x9.8×(2)土メ99× (2x)* 0 clo り) 9.8=49x 28 (りEA= Ec より 2g2 =-2gx +19622 ズ= 49 最下をまでの中びは 22なので A20x2= 0.40Cm)。 =420 ニ 000000O 1自一長

解決済み 回答数: 1
物理 高校生

(2)の問題で、なぜ向心力が内側ではなく外側に働くんですか?

(2) 糸の張力の水平成分Ssin0=mgtan0が向 心力となる。運動方程式 mro?3Fから、 uPoint 同心力は, 重力や摩擦力のような力 の種類を表す名称でなく, 円運動を生じさせる 原因となる力の総称で, 常に円の中心を向く。 bAs 基本例題29 鉛直面内の円運動 基本問題 206 図のように,質量mの小物体が, 摩擦のない斜 面上の高さんの点から静かにすべりおりた。斜面 の最下点は半径rの円の一部になっている。重力 加速度の大きさをgとして,次の各間に答えよ。 ト(1) 斜面の最下点での小物体の速さを求めよ。 (2)..斜面の最下点で,小物体が面から受ける垂直抗力の大きさを求めよ。 m つは、 h の式 2 6 体の向心力になる。半径方向の運動方程式 1HAN 指針 (1)では,力学的エネルギー保存の 法則から速さを求める。 この結果を用いて,(2) では,最下点での半径方向の運動方程式を立てる。 解説 v2 =N-mg m- r N (1) 最下点での速さをひとし,す (1)の結果を用いて, 2h) ベり始めた直後と最下点に達したときとで, 力 学的エネルギー保存の法則を用いる。 最下点を 高さの基準とすると, N=mg(1+ mg r Point 鉛直面内の運動は等速円運動となら ないが,各瞬間において, 等速円運動と同様の 運動方程式を立てることができる。 mgh= mu° リ=V2gh 2 (2) 重力と垂直抗力の合力が, 最下点での小物

解決済み 回答数: 1