学年

教科

質問の種類

物理 高校生

できる範囲で教えていただきたいです

図1のようにx軸上の点A(a, 0, 0)に正の点電荷+2Qが,点B(-α, 0, 0) に負の点 電荷Qが固定されている。 以下の問いに答えよ。 ただしaは正の定数, クーロンの法則の 比例定数をk,電位は無限遠を0とする。 重力の影響, 空気抵抗, 摩擦は無視してよい。 ONE 5SOS- B(-Q) ・a 0 図 1 (1) x軸上の電場は位置により異なる。 電場の向きがx軸上で正になる区間と, 負になる区間 をそれぞれ求めよ (ただし, 点電荷のある x=a と x = α については考えなくてよい)。 また, x軸上で電場の強さが0になる x座標を求めよ。 (2) x軸上での電位Vx を位置xの関数として表せ (絶対値を用いて1つの式で表すこと)。 ま た, そのグラフの概形を解答用紙の所定の部分に描き, Vx = 0 となる x座標と, 極値があれ ば極値のx座標を求めよ。 (3) xy平面上で電位が0となる図形の式を求め、 そのグラフを解答用紙の所定の部分に描け。 -1- A(+2Q) a (4) yz 平面上の任意の点(0, y, z) での電位を表す式 Vyz を求めよ。 またyz 平面上での等 電位線として,最も適切な概略図を次の(ア)~ (カ)から選び,記号で答えよ。ただし,隣り合う 等電位線の電位差は一定であるとする。 Dagen (7) 2 (1) z (ウ) 20 2a 2a 0 2 -2aa0 -2a -2a- (カ) 2a a a 2a (エ) tary 2a y -2a-a 2a -2a- (5) x軸上で,負方向に十分離れた位置に、質量がm, 大きさがで符号が分からない点電荷 Pを置いたところ, Pは原点Oに向かって動きはじめた。 Pはx軸上だけを動くものとする。 (a) 点電荷Pの符号を答えよ。 (b) 点電荷Pはどこまで原点Oに近づくか。 そのx座標を答えよ。 (c) 点電荷Pが動きはじめてから, 原点Oに最も近づくまでの間の, 速さが最大になるx 座標と, 速さの最大値を求めよ。 - 2-

回答募集中 回答数: 0
物理 高校生

(5)なんですが、Qが斜面を離れる時T2=0ではなぜダメなのですか?

セント 24 〈動く斜面上の糸でつるした小球〉 (2) (4) 加速度運動しているP上で観測すると,Qには重力, 垂直抗力、張力のほかに慣性力がはたらいて、 ている。 ヒント (3) 『Qは斜面にそって上昇する』糸がたるむので糸の張力は0になる (5) Qが斜面から離れる垂直抗力は0になる N P (1) 台Pが静止しているので、小球Qには たらく力は重力、張力、 垂直抗力である (図a)。張力の大きさを T, 垂直抗力の 大きさをNとすると, 小球Qについて、 斜面方向の力のつりあいより mg coso B T=mgsin0 [N] 斜面に垂直な方向の力のつりあいより N=mg cos 0 (N) (2) 左向きに加速度 α 〔m/s'] で運動する台 P上で観測すると,小球Qには大きさ ma〔N〕 の慣性力が右向きにはたらき, 小球Qは静止している (図b)。 張力の大 きさを T', 垂直抗力の大きさをN' とす ると,小球Qについて, mgsine 斜面方向の力のつりあいより mg cosa T'+macos0=mgsin0 よって T'=mgsino-macos0 [N] mg 図b 斜面に垂直な方向の力のつりあいより N' =mgcos0+masin0 [N] ※A (3) 小球Qが斜面にそって上昇するとき, 糸がたるんで張力は0になる。 これよ り台Pの加速度がα 〔m/s ] になったとき, 張力の大きさ T' の値 (①式)が 0 になる。 ① 式より gsin0 よって ao= -=gtan 0 [m/s²) cos o N" T' T'=mgsin0-macos0=0 (4) 右向きに加速度6[m/s'] で運動する台 P上で観測すると, 小球Qには大きさ mb〔N〕 の慣性力が左向きにはたらき, 小球Qは静止している (図c)。 張力の大 きさをT", 垂直抗力の大きさをN" と mb sina mbicos A すると, 小球Qについて, 斜面方向の力のつりあいより T"=mgsin0+mb cos 0 [N] mg sin of 斜面に垂直な方向の力のつりあいより N"+mbsin0=mgcost mg よって N"=mgcos-mbsin0 [N] B (2) (5)小球Qが斜面を離れるとき,垂直抗力は0になる。 これより,台Pの加速度 が bo〔m/s?] になったとき,垂直抗力の大きさ N"の値 (②式) が0になる。 ②式より N"=mgcoso-mbosin0=0 よってbo= gcose g sino - [m/s2] tan 0 mgsin 0 Q mg N'Y Q mb ma masine C TIT. 図 a macose mg coso 図 c 25 (5) 三角 (7) 小 三小小交速 (1) 小 (2) A 別解 慣性系(静止系 から観測すると、小球Qはた 向きに加速度αで等加速度 動をしている。 N'S N' cos 6 1 Tsine T cose N' sin 8 10 Img 水平方向の運動方程式は ma=N'sin0-T'cose 鉛直方向のつりあいの式は mg = N'cos0+T'sin0 この2式より T'=mgsin0-macose [N] N'=mgcos0+masino [N] ←B 別解 慣性系 (静止系 から観測すると小球Qは 向きに加速度で等加速度 動をしている。 T'sin 6 N'' cos O- N" T T'' co N'' sin 10. Img 水平方向の運動方程式は mb=T"cos0-N"sin 鉛直方向のつりあいの式 mg=T"sin0+N"co この2式より T"=mgsin0+mbcos N"=mgcoso-mbsin (3

回答募集中 回答数: 0
物理 高校生

全問題答えと解説をお願いします。🙏

応用問題 じゃ!! 音HO×08 、 コーー 応用問題 5e mofSi a口 ズツ3 僕 |1| x軸上を負の向きに,正弦波が進んでいる。図1は,ある時刻における変位 ymf 0.1 y [m] と位置x[m] との関係を示している。また, 図2は,ある位置での変位y ABCD/E F G\H 3 0 12x(m) 6 [m] と時刻t [s] との関係を示している。 -0.1 (1) 波の速さはいくらか。 図1 (2) 図1を=0 の波形として、図2のような変位と時刻の関係となる点を, A ym ~H の記号で答えよ。 (3) 図1の状態のあと, 点Aの位置に波の山が来るときの時刻を,自然数 (n= 0.1 と s) 0.04 0 0.02 -0.1 0, 1, 2,…)を用いて表せ。 図2 《ヒント》 (2) 図2において、 時刻0から微小時間が経過したとき, 媒質の変位の向きはy軸の正の向きになる。図1の 状態から微小時間が経過したときの波形を描くことで, 媒質各点の速度の向きを判断できる。 《解答》(1) 3.0×10m/s (2) D (3) (2.5+4.0)× 10-2 [s] 2 に om'01×A0 阪音。 は 宝の着 開 mn00.0 ses 天番問の Sのまさを遊一お題①常常 口開 数 位 図 さすでもの宝のい () |2 固定された反射板による波の反射を考える。図は, 波の進む向きを x軸と して、時刻=0における入射波を示している。入射波は正弦曲線で表され, 波 の周期をT [s] とする。また, 波は, 反射板で固定端反射されるものとする。 (1) 図に示された入射波に対する反射波の波形を図中に描け。 (2) 図の状態から時間が経過して,入射波と反射波の合成波の変位が,どの xについても0となる最初の時 正 (1 刻を求めよ。 (3) 合成波の変位がどの xでも0となる状態は, 一定の時間間隔で繰り返される。図の状態から数えて,合 成波の変位がどの xでも0となる n回目の時刻を求めよ。 《ヒント》(3) 合成波の変位がどのxでも0となる時刻は, 1/2周期で繰り返される。 反射波 反射板工 《解答》(1) 上下に 反転 入射波 ザ 折り返す 図1 1お火!!今

回答募集中 回答数: 0
物理 高校生

高校 物理 波 全問題答えと解説をお願いしたいです。

応用問題 じゃ!! 音HO×08 、 コーー 応用問題 5e mofSi a口 ズツ3 僕 |1| x軸上を負の向きに,正弦波が進んでいる。図1は,ある時刻における変位 ymf 0.1 y [m] と位置x[m] との関係を示している。また, 図2は,ある位置での変位y ABCD/E F G\H 3 0 12x(m) 6 [m] と時刻t [s] との関係を示している。 -0.1 (1) 波の速さはいくらか。 図1 (2) 図1を=0 の波形として、図2のような変位と時刻の関係となる点を, A ym ~H の記号で答えよ。 (3) 図1の状態のあと, 点Aの位置に波の山が来るときの時刻を,自然数 (n= 0.1 と s) 0.04 0 0.02 -0.1 0, 1, 2,…)を用いて表せ。 図2 《ヒント》 (2) 図2において、 時刻0から微小時間が経過したとき, 媒質の変位の向きはy軸の正の向きになる。図1の 状態から微小時間が経過したときの波形を描くことで, 媒質各点の速度の向きを判断できる。 《解答》(1) 3.0×10m/s (2) D (3) (2.5+4.0)× 10-2 [s] 2 に om'01×A0 阪音。 は 宝の着 開 mn00.0 ses 天番問の Sのまさを遊一お題①常常 口開 数 位 図 さすでもの宝のい () |2 固定された反射板による波の反射を考える。図は, 波の進む向きを x軸と して、時刻=0における入射波を示している。入射波は正弦曲線で表され, 波 の周期をT [s] とする。また, 波は, 反射板で固定端反射されるものとする。 (1) 図に示された入射波に対する反射波の波形を図中に描け。 (2) 図の状態から時間が経過して,入射波と反射波の合成波の変位が,どの xについても0となる最初の時 正 (1 刻を求めよ。 (3) 合成波の変位がどの xでも0となる状態は, 一定の時間間隔で繰り返される。図の状態から数えて,合 成波の変位がどの xでも0となる n回目の時刻を求めよ。 《ヒント》(3) 合成波の変位がどのxでも0となる時刻は, 1/2周期で繰り返される。 反射波 反射板工 《解答》(1) 上下に 反転 入射波 ザ 折り返す 図1 1お火!!今

回答募集中 回答数: 0
物理 高校生

合っているか確かめて欲しいです!また間違っていたら解説もしてくれると大変嬉しいです!!よろしくお願いいたしますm(_ _)m

目然の長さがで重さが無視できるほど軽いばねの一端を天井に固定し、もう一端に質量mの小塚を 取り付けた。手をはなしてばねを静止させたところ、ばわの長さは自然の長さから 10%伸びていた。 その後,図1のように, ばねが鉛直線と6の角度をなす円すい振り子となるように小球を水平面内で等逃門 運動させたところ, 小球の角速度はのでばねの自然の長さからの伸びはaであった。このとき以下の同に 谷えなさい。ただし、 重力加速度の大きさをgとし、 小球の大きさ,空気抵抗は無視できるものとする。 横からみた 様子 7t0 上からみた 様子 円軌道の 中心 切断 F 切断 A 床 レ 図1 図2 問1 小球とともに回転する観測者の立場で小球にはたらく力を考える。ばねのばね定数が1, m, gを用い て表されることをふまえた上で, 水平方向および鉛画方向の力のつり合いの式を, 1, m, θ, o, a, gのう ち,必要なものを用いて表しなさい。 問2 ばねの伸びaは静止時の伸びの何倍になるか答えなさい。ただし, 1, m, θ, gのうち, 必要なものを 用いて表しなさい。 問3 角速度のを, 1, m, θ, gのうち, 必要なものを用いて表しなさい。 問4 等速円運動していた小球とばねの連結部が切断され, 図2のように水平な床からhの高さにあった小 球はばねからはなれて運動をはじめた。ここで, 等速円運動の円軌道の半径をrとする。 (1) 小球が水平方向および鉛直方向に行う運動を, 初速度と加速度の情報を含めて説明しなさい。ただし、 それぞれの運動を説明するために, r, m, w, gのうち, 必要なものを用いなさい。 (2) 円軌道の中心を通る鉛直線と床面との交点を点Aとする。ばねからはなれた小球が床に到達する位置 と点Aとの間の距離を, r, m, w, h, gのうち, 必要なものを用いて表しなさい。 図1のように,なめらかに動くピストンを持つ円筒形のシリンダーが水平に置かれており, その内部に 2 当同子ムてからなる押相気休かS閉で込められている シリンダ ーとピストンには断赤せよ田 れても cetee

回答募集中 回答数: 0
物理 高校生

(さ)で「v²ーv。²=2ax」は使えないんですか?

States along the AT. Cimbing ded hillides s from North Carolina bengamot (Georgia to southern h into Ontario, ich blooms berries adI cohosh, oeyedaisy,black-eyedSusan New England)。 bee balm (Georgia lo New York), touch-me-not, boneset. above other undergrowth, e by tubelar fowers of the deepest, of he carlier nowers will hv I I 図2に示すように、正の荷電粒子(質量m [kg),電気量q(C), q> 0)が, x 軸上を真っすぐ正の向きに運動してきて原点0を volm/s)の速さで通過した のち,点A, B, Cを通過した。x軸上の電位の様子は図3のように示され V とす。 る。A, B. Cのょ座標を, それぞれ xA, Xル, Xc とする。また,原点0を電位 の基準とし、図3中の1VaはAからBまでの電位を示す。 し x Cm) XcーXo 大二関 A m, 4, D, エh, エル, Ic. VEのうち, 必要なものを用いて,以下の各間に答 えよ。 図2 ?ng 二 例 OA 間/AB間およびBC間の電界の大きさを求めよ。 V(V)、 ある、(コ)粒子が OA 間で受けるカの大きさを求めよ。 離 ニ 濃 お ケ 粒子がAを通過するときの速ぎを求めよ。 AちAは Vg の JJS ケ 『個き端 H 日 粒子がAからBまで進むのに要する時間を求めよ。 (ス) 粒子がCを通過するときの速さを求めよ。 る本軍S / O 0 B C XA XB Xc 図3 T-Ed VE- Exe F. gVB eE Ma: 9.VE ズA XローXA ◇M2(750-24) mIA

回答募集中 回答数: 0