学年

教科

質問の種類

物理 高校生

数1青チャートの問題で (2)です 任意の実数xってどういう意味ですか? 問題の意味が理解できません a=0のとき例えばx=0は成り立たないと解説の最初の方にありますがなんのことかわからないです

194 00000 基本 115 常に成り立つ不等式 (絶対不等式) (1) すべての実数x に対して, 2次不等式x2+(k+3)x-k> 0 が成り立つよう な定数kの値の範囲を求めよ。 (2) 任意の実数x に対して, 不等式 ax2²-2√3x+a+2≦ 0 が成り立つような定 数αの値の範囲を求めよ。 p.187 基本事項 指針左辺をf(x) としたときの, y=f(x)のグラフと関連付けて考えるとよい。 (1) f(x)=x2+(k+3)x-kとすると, すべての実数x に対してf(x)> 0 が成り立つのは, y=f(x)のグラフが常にX軸より上側 (v>0 の部分)に あるときである。 y=f(x)のグラフは下に凸の放物線であるから, グラフが 常にx軸より上側にあるための条件は, x軸と共有点をも たないことである。 よって, f(x)=0の判別式をDとする と, D<0 が条件となる。 D<0はkについての不等式になるから, それを解いてんの値の範囲を求める。 (2)(1)と同様に解くことができるが,単に「不等式」 とあるから.α=0の場合(2次 y=f(x) f(x)の値が常に正 a=0のとき、 y=f(x) の よって す の条件は, x軸と共有 ある。 2 める条件 であるか よって a<0と [補足] この例題 対不等式

解決済み 回答数: 1
物理 高校生

物理の問題の(2)についてわからないところがあります。 Asin(2πft+π)にはマイナスがなく、どうして、-Asin2πftにはマイナスがあるのですか。

218. 単振動の式 原点Oを中心として,x軸上で単振動をする物体があ る。 この単振動の振幅は A[m〕 振動数はf [Hz] である。 物体が, 原点O を負の向きに通過する時刻を t=0 とする。この単振動について,次の各 問に答えよ。 Ons st (1) 角振動数を求めよ。 (2) 時刻 (0) における変位 x [m] を表す式を示せ。 (3) 速さの最大値を求めよ。 (4) 加速度の大きさの最大値を求めよ。 例題 30 ヒント (2) 物体は, t=0 において原点を負の向きに通過するため、 初期位相は"となる。 PRAUDONES (1) 218. 単振動の式 解答 (1) 2f [rad/s] (2) x=Asin (2ft+m) [m] (x=-Asin2πft [m]) (3) 2πfA [m/s] (4) 47²f2A (m/s²) 指針 単振動における変位の式は,初期位相が0のとき, 角振動数を w とすると, x=Asin (wt+0) と表される。 また, 振幅をAとすると, 速さの最大値は v = Aω, 加速度の最大値は α = A ω² となる。 2π W= -=2πf [rad/s〕 T 2π 解説 (1) 角振動数ω [rad/s] は、 周期T 〔s] を用いて, w= と表 T される。 T= の関係を用いると, f (2) 原点を負の向きに通過する時刻を t=0 とし ており, 初期位相はπである (図)。 求めるxの 式は, (1) のω=2πf の関係を用いて, x=Asin(wt+0)=Asin (2πft+™) [m] (またはx=-Asin2πft〔m〕) (3) 速さの最大値は, v=Aw [m/s] なので, w=2πfの関係を用いて, v=Aw=2πfA[m/s] x[m] A π -A• 初期位相π(t=0) Ax 0 (4) 加速度の大きさの最大値は, a = Aw2 から, w=2πf の関係を用い t=0 自 には は正を本過り 正の を言 本間

回答募集中 回答数: 0