学年

教科

質問の種類

物理 高校生

(2)のX(t)=0ってどっから出てきたんですか?

A 1. 〈斜方投射と相対運動〉 6/16 一定の速さ Voで鉛直方向上向きに上昇している気球がある。 気球に乗っている人の手の 高さが地上から高さんの所で,この気球から見て小物体を初速度の大きさで手から水平 に投げた。小物体が投げられた時刻をt=0s 投げた手の真下の地表を原点とし,鉛直方 向上向きを正としてy軸をとり、水平方向で小物体が投げられた向きを正としてx軸をとり, 重力加速度の大きさを」とし、気球は回転しないものとし、空気抵抗は無視できるとする。 (1)地表から見た, 小物体の位置のx成分 x(t) を求めよ。 (2) 気球に乗っている人は小物体を投げた手の位置を変えずに小物体を観察する。その手の 位置を基準(新たな原点 0))として小物体を見た場合の, 小物体の位置のx成分x(t) を求 めよ。 (3)地表から見た, 小物体の位置のy成分y(t) を求めよ。 (4) 気球に乗っている人が小物体を投げた手の位置を基準(原点O')として鉛直方向上向きを 正とする新たなy'′ 座標軸を考える。 その座標軸 y' は気球に乗っている人には静止してい る。この場合の, その座標軸y' を用いて表した小物体の位置のy′成分y' (t) を求めよ。 (5)地上から見てこの小物体が最高点に達した高さを、気球に乗っている人が見たときにど のようになるか。 (4)で用いたy' 座標軸の位置 y' としてその位置を表せ。

回答募集中 回答数: 0
物理 高校生

(3)の詳しい解説お願いします

50.F-xグラフ 解答 (1) ばね定数 (2)(3)1/12倍 指針フックの法則から,F-xグラフの傾きが表 している物理量を考える。 解説 (1) フックの法則 「F=kx」 から, F-x ラフの傾きは、ばね定数を表している。 (2) F-xグラフの傾きは, ばね定数を表す。 図から、 グラフの傾きが大きいのはAである。 A 40= 2.4. (2) ばね定数が40N/mのばねに取り換え, (1) と同じ力でばねを押し縮め たとき, ばねの縮みは何mか。 24=40x 105 思考 0.6 513 50F-xグラフ 2本のばねA,Bについて FA 引っ張る力Fと, ばねの伸びxとの関係を調べたとこ 3、図のようなF-xグラフが得られた。次の各問に 答えよ。 (1) グラフの傾きは何を表しているか述べよ。 B (3) ある力F でばねを引っ張っ たとき, ばね A, B はそれぞれ X, XB だけ伸びたとする(図)。 A, B のばね定数ka, kB は, グ ラフの傾きに対応するので, FA B Fo (2) ばねA,Bのどちらのばね定数が大きいか。 0 XA XB x Fo Fo kA= kB= XA XB Aの伸びは,Bの伸びの半分であったので、 2x=xBから, Fo Fo 1 kB= = -KA XB 2xA 2 したがって, Bのばね定数はAのばね定数の 1/12 倍 である。 別解 (3) 同じ力を加えているので,フックの 法則から, F=RAXA F=kBXB RAXA=kBxB Aの伸びはBの伸びの半分であったので, XA XB kB= 11/23 である。したがって, XA XB -KA 同じ力を加えたとき,Aの伸びはBの半分であった。 Bのばね定数は Aのばね定数の何倍か。 ただし, 分数のまま答えてよいものとする。 50

回答募集中 回答数: 0
物理 高校生

これの⑷の問題で、 問題文に有効数字を合わせたら答えは2桁になりますが、どういう時に3桁で表せばいいのですか? 問題文に合わせる時と和と差、積と商の計算方法で出た答えにするのかわかりません、、、 問題文と計算結果の桁数の有効数字の桁数が大きい方にするっていうことなんですか?... 続きを読む

を右向き きに速さ 発展例題 2 等加速度直線運動 斜面上の点から, 初速度 6.0m/sでボールを斜面に沿 って上向きに投げた。 ボールは点Pまで上昇したのち, 下 降し始めて、 点0から 5.0m はなれた点Qを速さ 4.0m/s で斜面下向きに通過し, 点0にもどった。 この間, ボール 等加速度直線運動をしたとして, 斜面上向きを正とする。 (1)ボールの加速度を求めよ。 →発展問題 24 25 26 5.0m 6.0m/s ボールを投げてから,点Pに達するのは何s後か。 また, OP間の距離は何mか。 (3)ボールの速度と,投げてからの時間との関係を表すv-tグラフを描け。 (2) (4) ボールを投げてから、点Qを速さ 4.0m/sで斜面下向きに通過するのは何s後か。 また、ボールはその間に何m移動したか。 ( 6) ■ 指針 時間が与えられていないので, 「ぴーぴ²=2ax」 を用いて加速度を求める。 また, 最高点Pにおける速度は0 となる。 v-tグラフ を描くには,速度と時間との関係を式で表す。 ■解説 (1) 点 0, Q における速度, OQ 間 の変位の値を「v2-vo²=2ax」に代入する。 (4.0)-6.02=2xqx5.0 α=-2.0m/s2 (2)点Pでは速度が0になるので,「v=vo + at」 から、 0=6.0-2.0×t t=3.0s 3.0s 後 OP間の距離は, 「v-vo2=2ax」 から, 02-6.02=2×(-2.0) xx x=9.0m 1/2a」からも求められる。) (3) 投げてからt[s] 後の速度v [m/s] は, v = 6.0-2.0t グラフは,図のようになる。 「v=votat」から, v [m/s]↑ 6.0 OP間の距離 PQ間の距離 O 1 2 3 4 5 16 t(s) - 4.0 - 6.0 (4) 「v=vo+at」 から, t=5.0s 5.0s 後 -4.0=6.0+(-2.0) xt ボールの移動距離は, v-tグラフから, OP 間 の距離とPQ間の距離を足して求められ, 6.0×3.0 (5.0 -3.0)×4.0 + 2 2 =13.0m Point v-tグラフで,t軸よりも下の部分の 面積は、負の向きに進んだ距離を表す。 7m

回答募集中 回答数: 0
1/799