学年

教科

質問の種類

数学 高校生

解説をみてもよくわかりません 解説お願いします

-20 基本例 例題 54 平面上の点の移動と反復試行 右の図のように,東西に4本, 南北に5本の道路がある。 地点Aから出発した人が最短の道順を通って地点Bへ 向かう。このとき,途中で地点P を通る確率を求めよ。 ただし,各交差点で, 東に行くか, 北に行くかは等確率と し,一方しか行けないときは確率1でその方向に行くも のとする。 A 基本 52 重要 55 指針 求める確率を A→P→Bの経路の総数 A→Bの経路の総数 から, これは,どの最短の道順も同様に確からしい場合の確率で,本間は道順によって確率 5C2X2C2 7C3 とするのは誤り! 00000 P B 重要 右図の 出たら 別に 「たら れぞ Aは う確 金 が異なる。 例えば, A111→ →→P→→ Bの確率は C D P B 11 1 ・1・1・1・1= 222 A→1→11P 11 Bの確率は 111 11 1 ・1・1= A 2 2 2 22 32 XUS したがって,Pを通る道順を, 通る点で分けて確率を計算する。 右の図のように,地点 C, D, C′', D', P'をとる。 解答 P を通る道順には次の3つの場合があり,これらは互いに 排反である。 D P B C D' P' [1] 道順 A→C→C→P この確率は 1/2x/121x1/2×11=(1/2)=1/1/2 A [2] 道順 A→D→D→P この確率は sc.(1/2)(1/2)x1/2×1=3 (1/2)=1/4 3 16 [3] 道順 AP′'→P [1] ↑↑↑→→と進む。 [2] ○○○と進む。 この確率はC(1/1) (12/12 × =6 6 2 32 よって、求める確率は 1 3 6 + 16 8 16 32 32 ○には,1個と 12個が 入る。 [3] 〇〇〇〇と進む。 ○には、2個と12個が 2 入る。 練習 右の図のような格子状の道がある。スタートの場所か ③ 54 端で表が出たときと,上の端で裏が出たときは動かな いものとす み,裏が出たら上へ1区画進むとする。ただし,右の 表が出たら右へ1区画進 ら出発し,コインを投げて, ゴール A 解答

回答募集中 回答数: 0
数学 高校生

(2)の場合わけで符号にイコールが付いているときとついてないときの違いはどこですか?

90 基本例 例題 119 絶対値を含む不等式の表す領域 00000 次の不等式の表す領域を図示せよ。 (1)|x+2y|≦6 (2)|x|+|y+1|≦20基本 指針 絶対値 場合に分けるに従い, 記号 | |をはずす。 ① A≧0 のとき |A| =A ② A<0 のとき |A|=-A そのままはずす - をつけてはずす (1)|≦正の数の特別な形なので、次のことを利用すると早い。 c0 のとき |x|≦cc≦x≦c (2)上の①,②を利用して場合分け。 場合分けのポイントとなるのは||内の式 となるとき。ここでは, x, y+1の符号によって4通りの場合に分ける。 (1)x+2y|≦6から -6≤x+2y≤6 (1)では, 場合分けをせず ||をはずすこと 12x-3ができる。 LOST 解答 14 よって -6≤x+2y - すなわち x+2y=6 A 1 - 12x+3× 求める領域は,下図 (1) の斜線部分。 ただし, 境界線を含 「不等式y≧x-3の む。 (2) [1] x≧0, y≧-1のとき 「表す領域」 と 「不等式 x+y+1≦2 すなわちy-x+1 [2] x≧0,y<-1のとき x-(y+1)≦2 y≤- -x+3の表す領 「域」 の共通部分。 すなわち y≧x-3. -x+y+1≦2 [3] x<0,y-1のとき [4] x< 0, y<1のとき -x-(y+1)≦2 すなわち y=-x-3 すなわち y≦x+1 求める領域は,下図 (2) の斜線部分。 ただし,境界線を含[1] [2] [3] [4] の場 む。 (2) 13 -2 12 3x 合の領域を合わせたもの が、求める領域となる。 [1] の場合の領域は次の ようになる -6 -3 Ay 境界線を含む 12 O

回答募集中 回答数: 0
数学 高校生

コとサがそれぞれ4番、8番になるのですがなぜですか?

ある工場で作られた牛乳の容量は 1000 mL と表示されている。この牛乳 4本を無作為に抽出し牛乳の容量を計 測したところ。 平均は1001.6mL, 標準偏差は 10.0mL であった。 この調査結果から牛乳の容量は表示通りではない と判断できるか、有意水準 5% で両側検定を以下のように行った。空欄に当てはまる最も適切なものを答えよ。 1234 100.6-1000 ただし、ア と ウに同じ語句を書いた場合はどちらも不正解とする。 また、空欄 は下の選択肢から選 3あ び、番号で答えよ。 正規分布工(値) z= オ (値)※値を求める途中の式でも可 力(X を含む式) とおくと,Zは標準正規分布 N(0, 1) に従うと見なせる。 両側検定を行うから,キ(Xを含む方程式または不等式) P(12123.2)=2(as-u(3,2)=0.00138 この工場で作られた牛乳の容量の平均をm(mL)とし、 (mの式) ウ(漢字二字) ア(漢字二字) 仮説を 400は十分大きいので、イのもとでの標本の大きさ 400 の標本平均は、 仮説を≠1000 とする. 文-1000 に近似的に従うから、10 de 2-10 2x-2000 となる確率p を求めると、 P => ク(値) となり,p (記号) 0.05 が成り立つので,ア 仮説は A 1 2003,2-2000 =32 よって、この標本調査の結果から, 牛乳の容量は B 次に、この問題を以下のように棄却域を考えることによって検定することもできる。 両側検定における有意水準 5% の棄却域は, P コ 0.95 であることを利用して, サ と表せる. 3.2 X=1001.6 のとき,Z= シ(値) となり、この値は棄却域に ス から,ア 仮説はA よって、この標本調査の結果から牛乳の容量はB コ サ の選択肢(同じものを繰り返し選んだ場合は両方とも不正解とする) 1 Z ≤ 1.64 2 Z ≤1.96 3|Z 1.64 4 Z ≤ 1.96 5 Z ≧ 1.64 6 Z≥1.96 7 || 1.64 8 |Z≥ 1.96

回答募集中 回答数: 0
1/124