大問1〜大間8から4題選択してください。 全体合とし、の部分用)
(選択問題 ) ののは「ミ
である。
大問2 次の各問いのにあてはまる数や符号,番号を答えよ。
ROOTER
[1]
選び番号を答えよ。
次の各問いに答えよ。ただし,アにあてはまるものは,下の選択肢から
10)
(1) 2次関数y=x²-8x+7のグラフはアの放物線であり,軸は直線
頂点は点 ウエオ)である。
x=
[10] ①の上に凸
[2]
② 下に凸
にあて
よっ ただし、は実
(2) 放物線 y=2x²8x+9を,x軸方向にカキ,y軸方向にクだけ平
行移動すると,放物線y=2(x+1)^2 +7 に重なる。
あったかい
(3) 2次関数のグラフが直線x=3を軸とし, 2点 (1,1), (27) を通るとき,
その2次関数はy=ケコ(x-サ+
である。
次の各問いに答えよ。
(1) 2次関数y=x2-6x+4 は, x = スで最小値センをとる。
(2) 2次関数y=-3x²+6x+3は,次のように変形できる。
y=-3(x-タ)+チ
この2次関数は,定義域が 0≦x≦3のとき, x=| ツで最大値
テ
x= ト で最小値 ナニをとる。
-8-
大問2はp.10 に続く)
2022 ⅡI秋ベーシック [数学]