学年

教科

質問の種類

数学 高校生

250.2 また、図を書く場合これでもいいですよね? (よく見る方のx-y図を90°時計回りに回転させた図) もう一つ聞きたいのですが、積分の問題で面積を求める時、記述式なら図を書いておくに越したことはないですか??(言葉不足なときに図がそれを示してくれているみたいなことっ... 続きを読む

378 000000 重要 例題 250 曲線x = f(y) と面積 (1) 曲線x=-y²+2y-2, y軸、2直線y=-1, y=2で囲まれた図形の面積Sを 求めよ。 p. 358 (2) 曲線x=y2-3y と直線y=x で囲まれた図形の面積Sを求めよ。 指針 関数x=f(y) は, y の値が定まるとそれに対応してxの値がちょうど1つ定まる。つまり、 xはyの関数である。 x = f(y) のグラフと面積に関しては, xy平面では左右の位置関係が (笑)よろ 問題になる。 右のグラフから左のグラフを引くことになる。5月 (1) x=-(y-1)^-1であるから、グラフは,頂点が点(-1,1), 軸が直線y=1の放物線 KAMP である。 → HJANTUO KI GA KE 01221 (2) y²-3y=yの解がα, β(α<ß) のとき, p.352で学習した公式が同様に使える。 解答 (1) x=-y2+2y-2=-(y-1)^-1 [L-1≦x≦2ではー(y-1)-1 <0 であるから、 右の図より [S) S=-S(-y²+2y-2)dy 1³ 3 S²(y-a)(y-B)dy=—— (B—a)³ +y2- (2) _x=y²-3y=(y-2)²-2 =v 05(x)0 曲線と直線の交点のy座標は, y2-3y=y すなわちy²-4y=0 を解くと, y(y-40から y = 0, 4 よって、 右の図から, 求める面積は 28 x 図 S=(y- (v2-3y)}dy =-{(-18 +4-4)-(1/3+1+2)}-6 4-4) - ( ²3 + 1 + 2)} = 661-21 (21-4 3 9 6 = £1 C00=(2xảy 0≤ (x) #5 12x20 xh(x- y₁ -5 9 4 YA SV-S a -21 4 3 320 であるから =f'(v²-4y)dy=-Sy(y-4)dyリーであり、定義が 32 =-(-1) (4-0)³-3²0 6 図形の面積Sを求めて 2 1 O x 4 x a 2曲線間の面積 EL 区間 c≦y≦dで常に f(y)≧g(y) のとき, 2曲線x=f(y), x=g(y) と 2直線y=c, y=dで囲まれ た図形の面積Sは s=${f(y)=g(y)}dy YA xx=g(yd 0 S x=f(y) 131 右のグラフから左のグ ラフを引く y軸はx=0であるから (1) S², (0-f(x))dy (4) KL (2)(x-(y)ldy を計算することになる。」 Sv=1 積 で を求 部分 まそ ま を作 より に近 実 と、 y 0 で 方形 分 n

回答募集中 回答数: 0
数学 高校生

上の問題をこのように解きました。 答えが違ったのですが、これは、やり方が違ったのでしょうか? 原因を教えてください

IECK3 |3次方程式 r'+ px* + qx + 5=0の1つの解が2-iのとき,実数 p, +yi (x, y:実数)を解にもつならば, その共役複素数x,-yiも解にもつ。 ヒント!) 一般に, 実数係数の3次方程式ax'+bx?+cx+d=0が虚数解x」 難易度 ☆ CHECK1 CHECK2 CHECK3 絶対暗記問題 18 (東京電機大 * ) の値を求めよ。 講義 2 となる。 0, これも大事だから覚えておこう。 解答&解説 D.4が実数より,実数係数の3次方程式:1r°+px°+qx+5= 0が d 講義 a 2-1を解にもつならば, この共役複素数 (2+i)も解である。この他のも う1つの解をyとおくと, 解と係数の関係より =-1 3次方程式の解と係数の …(答) p 1 関係の公式: b (27)+(2ナ1)+y=FP a+B+y= a 9 C aB+By+ya = a 講等 1 (2-i)(2+i)+(21)y+y(27) = d aBy= a を使った! (2-)(2+i)y=(=5) 3 ③より,(4-)y= 15, 5y=-5 …Y= -1 -1 0より,4+[y ーP 1 *p=-3 講 のより, 4-)+4y=q, A+1-4=9 以上より,p=-3, g=1 9=1 .(答) 答) 頻出問題にトライ·4 難易度 CHECK 1 CHECK2 CHECK3 次万程式r+ax+b=0(ただしbキ 0) の1つの解をaとおくと、 他の2つの解は a?, α'になる。このとき, 次の問いに答えよ。 (1) a, bおよびaの値を求めよ。 12) nを正の整数とするとき, α"" を求めよ。 解答は P237 43 山角関数 指数関数と対数関数 微分法と積分法 刀程式·式と証明 図形と方程式 5-1|

回答募集中 回答数: 0
1/2