学年

教科

質問の種類

数学 高校生

数検準一級です。緑のマーカーのところがわかりません。 なぜ八分の七になるのでしょうか? 教えていただきたいです。

問題 7 解答 -21 [解説 =tとすると 23r+1+3・7_2-3+1+3.7~ 5・23-7-1 5・2-34-7-1-1 2. 787-8 +3 7をかける 分母と分子に 準1級2次 第4回 実用数学技能検定 P.86 ~P.91 問題 1 解答 問題 2 (B)=(1.1) (=5+3/31. (+3√315-30 -5-3/3) [解答 (1)g= 1 4√√6 -5-3√31 (-5-334-5+34) b=- √6 3 (2) a= b=112 5- 解説 [解説 のときであり <1より a+β=p, aβ=gとおくと, 条件は p+2q=4 …① 2. 2x+1+37* (2) p2-q=3...② +3 8 -= lim- と表される。 ① + 2x②より lim 5・23-7-1100 5 2p2+p-10-0 (1) さいころを1回振るとき、 2以下の目が出る 確率は1/28-1/2である。 4 Xは二項分布B 32.4 に従うので、Xの平均 と分散は これを解いて 3 1 -- 5 E(X)=32.1=8.V(X)=32.1.0/ -= 6 4 p=2. 2 7 =-21 指数関数の極限 a>1のとき lima=∞, lima=0~ 200 0<a<1のとき limα = 0. lim a=00 00 8 MOGAN 5 13 ②よりp=2のときg=1,p=-1のとき== p=2.g=1のとき,解と係数の関係よりα,B は次の2次方程式の2解である。 t2-2t+1=0 これを解くとt=1 (重解)より, α=β=1 p=-- 5 13 1/12g=1/2のときα.Bは次の2次方程式 の2解である。 4 513 t+= t+==0 2' -5±3√3i これを解くとt= より 4 -5±3√3i -53√3i α=- B= (複号同順) 4 4 以上より求める組は (-5+3/31-5-3/3). (α,β) = (1,1) 4 (-5-3√31-5+3√31) 4 Y=aX+bの平均と分散は E(Y) = aE(X) + b = 8a + b. V(Y) = α-V(X)=6² より 8a+b=0.6m²=1 これを解いてa= 4v6 b= √√6 3 二項分布の平均, 分散、標準偏差 確率変数X が二項分布B (n. p)に従うとき、 q=1-pとすると E(X)=np. V(X)=npq.(X)=√npq 1次式の平均、 分散、標準偏差 Xを確率変数とし. α, bを定数とするとき E(aX+b)=aF(X) +6 V(aX+b)=α-V(X) (ax+b)=lalo(x) (2)(1)よりm=E(X)=8. a=√V(X)=√6である。 Y=aX+bの平均と標準偏差は E(Y)=8a+b. (Y) = lala(x)=√6a 第4回 3

回答募集中 回答数: 0
数学 高校生

至急です 数ⅠAの問題です エからが分かりません 誰か教えてください

| 104 | 数学ⅠA実戦問題 実戦問題 5 ★★☆ 制限時間15分 (1)辺の長さが等しい正方形と正三角形を、1つの辺で貼り合わせてできた多角形の辺り はア ] である。 また、辺の長さが等しい正六角形と正三角形を,1つの辺で貼り合わせ してできた多角形の辺の数はイである。 (2) 太郎さんと花子さんは,面が合同な正多角形である2つの正多面体を, 1つの面で貼り 合わせてできる多面体について話している。 太郎: 例えば, 2つの正四面体を貼り合わせてできる多面体の面の数は、2つの正四 面体の面の数の和から貼り合わせた面の数を引けばよいからウだね。 花子:他の2つの正多面体の組み合わせでも同じことがいえるのかな。 太郎:右の図のように,正八面体 ABCDEF と正四 面体 ABCG を貼り合わせたとき,△ABGと △ABEは1つの平面上にあるように見える ね。 花子:確かめてみよう。 △ABC の定める平面と △ABG の定める平 方針に 面のなす角をα △ABCの定める平面と 太郎さんが △ABE の定める平面のなす角をβとしたと E B F G I が成り立てば △ABG と △ABEは1つの平面上にあるといえるね。 また、き オ [キク 太郎 : cosa= cos β= I であるから, が成り立つね。 数学Ⅰ・A 同様に,4点 A,D, C, G 4点B, F, C, G も1つの平面上にあるから, 正八面体と正四面体を貼り合わせたとき,面の数は だね。

回答募集中 回答数: 0
1/809