学年

教科

質問の種類

数学 高校生

分かりやすく解説お願いします🙇‍♀️🙇‍♀️

Check 例題265 りは素数nは正の整数 m,n を分母とする既約分数の総和を求めよ. 「解答 考え方 具体的な数で考えてみる。 たとえば,2と4の間 (2以上4以下) にあって、5を分母 とする数は、の順 既約分数の和比数列 He は正の整数でm<nとする、mとnの間にあってか (同志社大) BERSAN b. 5 つまり, 2,2 323 いる。項数は分子に着目して 11 (=20-10+1) 個である. これらの和を求めて、そのうち既約分数にならないもの(整数)を引くとよい. (=2), ₁ 1. 12. 13. 14. 15 (-3). 16, 17, 18, 19, 29 (-4) (20 5'5' 5' 5'5'5'5' 5 1 2+ (8-) X (82) S Focus m 以上以下でかを分母とする数は, mp+1 mp+2 mp (= m), (7J5 "(-))"81 2 差数列と等比数列 ..... 01-88 P P² P p つまり,初項m,公差 の等差数列となる.sat カー 項数np-mp+1,末項nであるから,その和 S」 は, Si= 12 (np-mp+1)(m+n)………① また,このうち,既約分数でない数は, m, m+1, m+2, n-1, n つまり,初項m, 公差1の等差数列となる. 項数n-m+1,末項nであるから,その和 S2 は, 10 2+ 5 となり,初項2、公差 1/3の等差数列になって (S2=1/12 (n-m+1)(m+n). ② (23. よって,求める和をSとすると, ①,②より, A 2 また=1/(m+n) np-1_np (= n) *** b²=ac (m+n)(np-mp+1-n+m-1) としてもよい. 分母が素数であるから, 既約分数でないものは mからnまでの整数に なる. S=1/12 (np-mp+1)(m+n)-1/12 (n-m+1)(m+n) 項数n(m-1) S1 から S2 を引けば、 まずはすべての分数の 和を求める. ¹2 公差 1 の等差数列 項数をんとすると, (0 &n=m+ (k-1) ²1 £5, =(n-m)p+1 だから, S₁=((nm)p+1} 469 具体例で検算s=Si-Se +n)(n-m)(n-1)具体例で検算 sobeda ÁHASEU ST-QUENE 具体的な数で調べて規則性をみつける x(m+n) 既約分数の総和となる.

未解決 回答数: 1
数学 高校生

これは何をしているのですか?

00000 X3/8 |重要 例題 164 三角形の面積の最小値 面積が1である△ABCの辺AB, BC, CA上にそれぞれ点D, E,F を AD: DB=BE:EC=CF:FA=t: (1-t) (ただし, 0 <t<1) となるように る。 (1) △ADF の面積をtを用いて表せ。 基本158 (2) △DEF の面積をSとするとき, S の最小値とそのときのtの値を求めよ。 指針 (1) 辺の長さや角の大きさが与えられていないが, △ABCの面積が1であることと、 △ABCと△ADF は ∠A を共有していることに注目。 RAHO △ADF == ADAF sin A 1/2/AD AABC= =1/12 AB・ACsinA (= 1), (2) △DEF=△ABC-(△ADF+△BED+△CFE) として求める。 ・・・・・・・・・! Sはtの2次式となるから, 基本形 α(t-p)'+αに直す。 ただしtの変域に要注意! 解答 (1) AD=tAB, AF=(1-t) AC 検討 であるから D 1-1 AADF= AD AF sin A 2 /F -t(1-t) AB AC sin A 2 AABC= -AB・ACsin A=1 2 よって AADF=t(1-t). ABAC sin A B C 1 1801-00 (*) 3t²-3t+1=3(t²-t)+1 =t(1-t) (2)(1) と同様にして ABEDACFE(1-t)=3{p-t+(1/2)^-1 (1) よって S=△ABC-(△ADF + △BED+△CFE) SS=3f-3+1 =1-3t(1-t)=3t²-3t+1=3t- 1 = 3 ( + - -1/2 ) ² + 1/ 1 (*) 1 ゆえに, 0<t<1の範囲において, Sは t=1/2のとき最小値- 1 をとる。 最小 (D,E,F がそれぞれ辺 AB, BC, CA の中点のとき最小となる) 1 1 2 1辺の長さが1の正三角形ABCの辺AB, BC, CA 上にそれぞれ頂点と異なる点 練習 ③ 164 D, E,F をとり, AD=x, BE=2x, CF=3x とする。 16 (1) △DEF の面積Sをxで表せ。 [類 追手門学院大] (2) (1) Sを最小にするxの値と最小値を求めよ。 p.264 EX120 1-t DE C Bt E1-t- 一般に AAB'C' △ABC 140 2007 B' AB' AC' AB AC A C' 基本 1辺の長さが60 M,NをOL=S を求めよ。 AOL 指針> ALMN に まず, 余弦 なお,正四 CHART 解答 I AOLMにおいて LM2=OL2+ON =32+42- OMN におい MN²=OM2+C ........ =42+22- AONLにおい NL2=ON2+C ゆえに よって

回答募集中 回答数: 0