学年

教科

質問の種類

数学 高校生

この問題を解いた上で写真3枚目の疑問にお答えいただきたいです。 ご要望があり次第、 解答も写真に載せます。

数学A 場合の数と確率 46** 8/11 (目標解答時間:塩分) 1から6までの番号が一つずつ書かれた6枚のカードがあり、これを6 1枚ずつ引いていく。ただし、引いたカードは元に戻さない。 6人が 花子さんは2番目にカードを引くことになっており、いたカードの番号が2のと きコインをもらえる。また、太郎さんは4番目にカードを引くことになっており、 いたカードの番号が4のときコインをもらえる。 (1)太郎さんと花子さんは、コインをもらえる確率について話している。 太郎: 花子さんの方がコインをもらえる確率が大きいよね。 引 花子 太郎さんの方がコインをもらえる確率が小さいって思うのはどうしてか な? 太郎: 花子さんの前にカードを引く人は1人しかいないんだから、番号2の カードを引く確率は大きいと思うよ。 花子:6枚のカードの並べ方を考えて、それぞれがコインをもらえる確率を考 えてみよう。 1から6までの番号が一つずつ書かれた6枚のカードを左から横一列に並べて、 左から24番目のカードの番号をそれぞれn2, nとする。 このとき、花子さんと太郎さんがコインをもらえる確率は,それぞれ n=2, n=4となる確率を考えることと同じである。 (i) 6枚のカードの並べ方は全部でアイウ通りあり、これらは同様に確からし い。 n2=2となる並べ方は、左から2番目に番号2のカードを並べて、残りの5枚 のカードを左から1,3,4,5,6番目に並べればよいのでエオカ通りある。 キ よって,花子さんがコインをもらえる確率は である。 ク (次ページに続く。) -86-

回答募集中 回答数: 0
数学 高校生

この問題が解説を見てもよく分かりません 解説よろしくおねがいします🙇

も内 173 の 演習 例題 194 対数方程式の解の個数 00000 aは定数とする。 xの方程式 {10g2(x2+√2)}^2-210gz(x2+√2)+α=0の実数 解の個数を求めよ。 指針 前ページの演習例題 193 同様, おき換えにより, 2次方程式の問題に直す。 変数のおき換え 範囲に注意 log2(x2+√2)=tとおくと,方程式は t2-2t+a=0 (*) 基本 183 2√2の値の範囲を求め,その範囲におけるtの方程式(*)の解の個 数を調べる。それには,p.239 重要例題 149 と同様, グラフを利用する。 なお、10g2(x2+√2)=t における x と tの対応に注意する。 SELECT 解答 log2(x2+√2)=t $0.0> (Sargola) (1) ① とおくと, 方程式は t²-2t+a=0 0218.0 1108. 2+√2≧√2であるから 215 21 >01.0 311 10 10gz (x2+√2) log√2 したがって t≧ (2) E 226 227 228 229 230 231 22 233 234 また,①を満たすxの個数は,次のようになる。 =1/2のときx=0の1個, のとき x2>0であるから 2個 t2-2t+α=0から Slant (1) x2+√2=25より, x2=2√2 であるから t=1/2のとき x=0 1/1/3のときx>0 よって x=±√2-√2 -t2+2t=a 1 よって、②の範囲における, 直線 y=aを上下に動か 3 y=a 放物線y=-t2 + 2t と直線 y= a 4 a! 1 1 i して、共有点の個数を調 べる。 の共有点の座標に注意して, 01 方程式の実数解の個数を調べると, α>1のとき0個; a=1, a< a< 2 のとき2個; -12 1 2 32 共有点なし。 <t> // である共有点1個。 4 a= =2のとき3個; -<a<1のとき4個 <a 1 3 t= 2 2 \t> である共有点2個。

未解決 回答数: 0
1/16