学年

教科

質問の種類

数学 高校生

二次方程式の解の判別です。 (2)の指針と解説にある、判別式がゼロより小さいの一方だけが成り立つという意味がわかりません。解説お願いします🙏

74 基本 例題 41 2つの2次方程式の解の判別 は定数とする。 次の2つの2次方程式 ①(k+8)x2-6x+k=0 x2-kx+k2-3k=0 について,次の条件を満たすんの値の範囲をそれぞれ求めよ。(P- (1) ①,② のうち, 少なくとも一方が虚数解をもつ。 (2)①,② のうち, 一方だけが虚数解をもつ。 ②(1) 1)S+ (E) ②については,2次方程式であるから,x2の係数について,k+80 に注意。 ①,②の判別式をそれぞれD, D2 とすると,求める条件は (1) Di<0 または D2<0 →解を合わせた範囲 (和集合) 基本40 (2)(1020) または (D120 かつD2<0) であるが,数学Ⅰでも学習したよ うに, Di<0,D2<0 の一方だけが成り立つ範囲を求めた方が早い。 チャート式基礎からの数学Ⅰ+Ap.200 参照。 CHART 連立不等式 解のまとめは数直線 ②の2次の係数は0でないから k+8≠0 すなわち k≠-8 解答 このとき,①,②の判別式をそれぞれ D1, D2 とすると(( ‚α D₁=(−k)²−4(k²-3k)=-3k²+12k=−3k(k−4) -+- D₂S (4) 4 =(-3)-(k+8)k=-k2-8k+9 8+ (S-) SI+SA 0<a =-(k+9)(k-1) 1)x+ (1) 求める条件は,kキー8のもとで D1 <0 または D2<0 DI<0からん(k-4)>0 キー8であるから ( 普通, 2次方程式 ax2+bx+c=0とい うときは,特に断りが ない限り, 2次の係 αは0でないと るために ( ゆえに<0,4<k+- 30k<-8,-8<k<0, 4<k..... ③ > D<0 から (k+9)(k-1)>0 2 実③ よって ...... k<-9, 1<k 4 JS1=s-9-8 求めるんの値の範囲は,③と④ の範囲を合わ #k<-8, -8<k<0, 1<k 01 4 >> (2) ①,② の一方だけが虚数解をもつための条件 は, Di<0, D2<0 の一方だけが成り立つことで あるある 多くの場合、2次方 -9-8 91 ゆえに、③、④の一方だけが成り立つkの範囲 を求めて-9≦k<-8,-8<< 0, 1 <k≦4

解決済み 回答数: 1
数学 高校生

こういう問題で、f(x)というものをよく見かけるのですが、これはどのような場合に用いるのでしょうか?解答をかくときに毎回意味が分からなかったので、教えてもらえると嬉しいです。

頻出 ★★☆☆ こを求めよ。 y=ax2+bx+6 105 絶対不等式 [1] 不等式の解の存在 ★★☆☆ (1) すべての実数xについて, 2次不等式+2kx-3k+4>0が成り立 つような定数kの値の範囲を求めよ。 Acid (2) 2次不等式 x-kx+k+3<0 を満たす実数x が存在するような定 数kの値の範囲を求めよ。 ReAction 不等式は,グラフと x 軸の位置関係を考えよ 例題98 3 x 4+ =ax2+bx+6 このプロセス 「条件の言い換え (1) すべてのxについて (1) (2) y= ⇒y= のグラフがx軸より上側にある。 とx軸の共有点は [ 3 (2)y= のグラフがx軸より下側にある 部分が存在する。 + a B 9 y= とx軸の共有点は 2次関数と2次不等式 y=f(x) のグラフは下に 凸の放物線であり、 次の ようになればよい。 V y=f(x) D<0 のグラフ ■, x軸と (1) f(x)=x2+2kx-3k +4 とおく。 - 0)で交 例題 93 すべての実数x について f(x)>0 が成り立つのは, y=f(x)のグラフがx軸と共有点をもたないときである。 よって, f(x) = 0 の判別式をDとすると D< 0 を満たす D ゆえに 1=k-(-3k+4)=k+3k-4 4 グラフ = (k+4)(k-1)0 軸と したがって -4<k<1 0) で交 (2) f(x)=x-kx+k+3 とおく。 f(x) <0 を満たす実数x が存在するのは,y=f(x)の 例題 グラフがx軸と異なる2点で交わるときである。 y=f(x) のグラフは下に 凸の放物線であり、 次の ようになればよい。 \y=f(x) 93 よって,f(x) = 0 の判別式をDとすると D> 0 たす ゆえに D=(-k)2-4(k+3)=k-4k-12 =(k+2)(k-6) > 0 したがって k<-2,6<h B) Point... 絶対不等式 A x D>0 例題 105 (1) では,与えられた不等式 x2+2kx-3k+40 から, 機械的に D> 0 とし てしまう誤りが多い。 3) 必ず「不等式の条件」 を 「グラフの条件」 に言い換えてから, 判別式の条件を考えるよ うにする。 105(1) すべての実数xについて, 2次不等式 x+kx+2k+50 が成り立つよ うな定数kの値の範囲を求めよ。 (2) 2次不等式 2x²-3kx+4k+2 <0 を満たす実数x が存在するような定数 んの値の範囲を求めよ。 191 p.220 問題105

解決済み 回答数: 1
1/1000